Курсовая работа: Моделирование и прогнозирование цен на бензин 2007

0,070247

0,05802

0,017294

3,35508

0,001962

Х2t-2

-0,561348

0,080791

-1,42428

0,204987

-6,94812

0,000000

Y = 43,76 + 0,001*X1 – 1,42*X2t-2 + 0,06*X4

Исследовав данную модель на адекватность при помощи коэффициента детерминации, критерия Фишера, критерия Стьюдента и проведения анализа остатков (см. Приложение 7), можно прийти к выводу, что поскольку общий и скорректированный коэффициенты детерминации достаточно близки к 1, то можно сделать вывод о достаточно сильном влиянии факторных признаков на результирующий показатель Y. Уравнение значимо по критерию Фишера. Рассмотрев критерий Стьюдента для коэффициентов регрессии β0 и β1 можно сделать вывод, что оба коэффициента также значимы. Выполняются 2 условия Гаусса-Маркова из 3. Таким образом, Таким образом, можно сказать, что линейная модель достаточно адекватна, хотя выполняются не все условия Гаусса-Маркова, однако прогнозирование по данной модели также представляется возможным.

Для того чтобы прогнозировать показатель с помощью регрессионной линейной модели, необходимо рассчитать факторы, влияющие на данный показатель, т.е. факторные переменные. Они рассчитываются так же, как и показатель Y, построением различных трендовых моделей: полинома, линейной, нелинейной моделей. Далее эти модели оцениваются с точки зрения адекватности, и выявляется наиболее подходящая для прогнозирования модель. Все получаемые модели и прогнозные значения факторных признаков представлены в Приложении 8.

При прогнозировании цен на бензин АИ-92 на следующие 4 периода, т.е. на апрель, май, июнь, июль 2007 года при помощи линейной регрессионной модели получены следующий данные:

Точечные прогнозы составляют 17,5777 руб. за литр в апреле, 13,6282 руб. за литр в мае, 13,2731 руб. за литр в июне и 17,607 руб. за литр в июле. Соответствующие интервальные прогнозные значения представлены следующими интервалами [ 16,73;18,42], [13,17;14,09], [12,796;13,75] и [12,399;13,41].


НЕЛИНЕЙНАЯ МОДЕЛЬ

Regression Summary for Dependent Variable: Y

R= ,86159959 RI= ,74235385 Adjusted RI= ,69941283

F(3,18)=17,288 p<,00002 Std.Error of estimate: 1,0297

St. Err.

St. Err.

BETA

of BETA

B

of B

t(35)

p-level

К-во Просмотров: 632
Бесплатно скачать Курсовая работа: Моделирование и прогнозирование цен на бензин 2007