Курсовая работа: Научно-исследовательская работа школьников в РБ

В состав команды может входить не более шести учащихся. Команду возглавляет капитан, назначаемый из числа участников команды. Каждая команда должна сопровождаться руководителем, который является официальным представителем соответствующего учреждения образования на турнире и несет ответственность за все действия команды во время проведения турнира.

Общий порядок проведения турнира зависит от числа участвующих команд. При наличии не менее 9 команд, он определяется следующим расписанием:

1-й день

Конкретные

даты см. в

Приложении В

Открытие турнира и жеребьевка отборочных боев первого тура См. пп.8,16
2-й день Письменный (нулевой) тур См. п.10
3-й день Отборочные бои первого тура См. пп.8,11,13
4-й день Отборочные бои второго тура См. пп.8,11,13
5-й день Финальные бои (основной и малый финалы) См. пп.8,11,14
Закрытие турнира

Для планирования турнира и разрешения спорных ситуаций, возникающих при его проведении, используется корректируемый рейтинг команд.

Рейтинг каждой команды - это величина, аккумулирующая результаты, полученные командой в ходе турнира, и призванная отражать ее относительную силу в ряду других участников. Он вычисляется по следующим правилам:

На основе рассмотрения предварительных материалов (см. п.4) каждая команда получает свой предварительный рейтингRпредв , который определяется следующим образом: суммируются баллы команды за все решения (находится сумма баллов команды Sком ), после этого по суммарным баллам всех команд, приглашенных на турнир, вычисляется средний балл Sср и предварительный рейтинг каждой команды

Rпредв = 0,5· Sком / Sср .

После проведения письменного (нулевого) тура происходит корректировка рейтингов команд. Для этого определяется приращение рейтинга каждой команды за нулевой тур R0 , равный отношению суммы баллов команды к среднему баллу всех команд, набранных в письменном туре. Скорректированный рейтинг команды равен:

R: = Rпредв + R0 .

После подведения итогов боя для каждой команды, участвовавшей в нем, производится корректировка текущего рейтинга. Для этого по итоговым суммам баллов всех команд (Sк , см. п. 20.2) находится средний итоговый балл команд в этом бою Sбоя и приращение рейтинга каждой команды, равное отношению Sк / Sбоя . Приращения рейтингов команд, полученные ими в отборочных боях первого и второго тура и в финальных боях, обозначаются соответственно: R1 , R2 , Rф . Скорректированные рейтинги, которые становятся после пересчета текущими, вычисляются по правилам:

после отборочных боев первого тура:

R: = Rпредв + R0 + R1, после отборочных боев второго тура:

R: = Rпредв + R0 + R1 + R2, после финальных боев (основного и малого финала):

R: = Rпредв + R0 + R1 + R2 + Rф .

Победителями турнира юных математиков (первое, второе и третье место) признаются команды, занявшие соответствующие места в финальном бое. Победители турнира награждаются дипломами Министерства образования соответствующих степеней.

Победителям малого финала (командам, занявшим в малом финале первое, второе и третье места) присуждаются соответствующие места, непосредственно следующие за местами команд - участников основного финала. Победители малого финала награждаются грамотами специального жюри.

Кроме этого, отдельные команды и участники могут быть отмечены поощрительными свидетельствами или похвальными отзывами.

Математический бой - главная составная часть турнира юных математиков. Под математическим боем понимается организованная дискуссия нескольких команд, в которой каждая участвующая команда поочередно выступает в качестве докладчика своих результатов, оппонента по выступлению докладывавшей команды и рецензента, оценивающего качество дискуссии двух других команд.

Команды,участвующие в математическом бое, называются участниками боя. Как правило, число команд-участников боя три или четыре (в исключительных случаях возможно участие пяти или шести команд в одном бое, см. пп.7 и 8). Все участники боя образуют состав боя.

Математический бой состоит из нескольких раундов, в каждом из которых обсуждается одна задача, отличная от задач других раундов. Количество раундов совпадает с числом команд, участвующих в этом бое. В каждом раунде команда-участник исполняет только одну из ролей: Докладчика (Д), Оппонента (О), Рецензента (Р) или Наблюдателя (Н1, Н2 или Н3) (см. п. 19). Оппонент, Рецензент и Наблюдатели называются оппонирующими командами (участниками). Смена ролей команд в последовательных раундах определяется циклической перестановкой в ряду "Д, Н3, Н2, Н1, Р, О". В наиболее полном случае шестикомандного боя эта смена определяется следующей таблицей:

Раунд → 1 2 3 4 5 6
Команда 1 Д Н3 Н2 Н1 Р О
Команда 2 О Д Н3 Н2 Н1 Р
Команда 3 Р О Д Н3 Н2 Н1
Команда 4 Н1 Р О Д Н3 Н2
Команда 5 Н2 Н1 Р О Д Н3
Команда 6 Н3 Н2 Н1 Р О Д

Первое место в математическом бое присуждается команде, имеющей наибольшую итоговую сумму баллов за бой. Последующие места присуждаются командам с меньшими итоговыми суммами баллов в порядке убывания.

Если расхождение итоговых сумм баллов двух или более команд невелико, должна быть вычислена относительная разность итоговых баллов этих команд, равная разности их баллов, выраженной в процентах от наибольшей итоговой суммы баллов в этом бое. Если относительная разность итоговых баллов команд не превосходит 5%, им присуждается одинаковое место в бое.

Если первое место в бою присуждено только одной команде, то такое первое место называется единоличным, а команда, занявшая его, считается одержавшей в этом бою чистую победу.

1.4 Научно-исследовательские конференции и семинары

Также большую роль в научно-исследовательской работе школьников играют научно-исследовательские конференции и семинары. Их основная цель - установление научного сотрудничества, поиск путей для взаимовыгодной исследовательской деятельности между учеными и преподавателями различных кафедр, с одной стороны, и старшеклассниками, с другой.

Практическая задача семинаров и конференций, направлена на осуществление основной цели, - изучение дополнительных тем математики, проведение исследовательской работы в специальных группах (секциях, минисеминарах) по конкретным научным проблемам или задачам исследовательского характера, с вынесением важнейших достижений, результатов, а также возникающих новых проблем на общий постоянно действующий семинар, а затем на конференции различного уровня (от школьных до международных).

2. Методы и приемы научно-исследовательской работы школьников

2.1 Неполная индукция

Неполная индукция - тип индуктивных умозаключений, посылки которых являются единичными суждениями, содержащими эмпирические данные об исследованных объектах некоторой области, а заключение - общим суждением обо всех предметах данной области или о некоторых, неисследованных предметах этой же. Доказательная сила Неполной индукции ограничена, поскольку связь между её посылками и заключением носит вероятностный, проблематичный характер. И тем не менее, именно Неполная индукция есть основной путь получения новых знаний, в отличие от так называемой полной индукции, посылки и заключение которой содержат в точности одну и ту же информацию.

Неполная индукция - индуктивный вывод о том, что всем представителям изучаемого множества принадлежит свойство Р на том основании, что Р принадлежит некоторым представителям этого множества. Так, напр., узнав о том, что инженер А работает продавцом, инженер B работает продавцом и инженер С также работает продавцом, вы можете сделать индуктивный вывод, что все инженеры ныне работают продавцами. Множество инженеров велико, трудно или даже невозможно установить, чем сейчас занимается каждый из них, поэтому ваше индуктивное заключение связано с риском: оно может оказаться ошибочным.

К-во Просмотров: 433
Бесплатно скачать Курсовая работа: Научно-исследовательская работа школьников в РБ