Курсовая работа: Нелинейные САУ
В соответствии с изложенным одинаково справедливо рассматривать в виде структурной схемы на рис. 2 с известным линейными операторами - и G(p) или в виде формы Коши (10).
Дополнительно отметим, что структурная интерпритация рассматриваемой системы на рис. 2 имеет еще одну структурную схему описания, приведенную на рис. 3.
|x|=c
l g y z
(-) x G(p) W(p)
Рисунок 3.
Это означает, что аналитической записи (10) соответствуют два структурных представления исследуемой СПС, причем второе позволяет рассматривать систему (10) как релейную систему с изменяемым ограничение, когда |x| - var.
Далее перейдем к анализу нашего метода.
Согласно частотной теоремы (10), для абсолютной устойчивости системы на рис. 3 лостаточно, чтобы при всех w, изменяющихся от -¥ до + ¥, выполнялось соотношение:
Re{[1+ w ) ] [ 1 + W(j w )]}>0,
а гадографm W(j w )+1 при соответствовал критерию Найквиста.
Для исследуемой системы условие (3) удобнее записать в виде
(4) и (5).
На рис. 4 приведенны возможные нелинейные характеристики из класса М() и годографы W(j w ), расположенные таким образом, что согласно (4) и (5) возможна абсолютная устойчивость.
y ^
y= g ()
|x| y=g (при =0)
>
0
“а” “б”
“в” “г”
Рисунок 4.
В рассматриваемом случае (10) при
W(p)=, когда
W(p)= W(p)G(p), G(p)=p+1,
годограф W(j w ) системы на рис. 5.
j
W(j w )