Курсовая работа: О сверхразрешимости некоторых классов факторизуемых групп
--- подгруппа Фраттини группы
, т.е. пересечение всех максимальных подгрупп группы
;
--- подгруппа Фиттинга группы
, т.е. произведение всех нормальных нильпотентных подгрупп группы
;
--- наибольшая нормальная
-нильпотентная подгруппа группы
;
--- коммутант группы
, т.е. подгруппа, порожденная коммутаторами всех элементов группы
;
---
-ый коммутант группы
;
--- наибольшая нормальная
-подгруппа группы
;
---
--холловская подгруппа группы
;
--- силовская
--подгруппа группы
;
--- дополнение к силовской
--подгруппе в группе
, т.е.
--холловская подгруппа группы
;
--- группа всех автоморфизмов группы
;
---
является подгруппой группы
;
---
является собственной подгруппой группы
;
---
является максимальной подгруппой группы
;
нетривиальная подгруппа --- неединичная собственная подгруппа;
---
является нормальной подгруппой группы
;
--- подгруппа
характеристична в группе
, т.е.
для любого автоморфизма
;
--- индекс подгруппы
в группе
;
;
--- централизатор подгруппы
в группе
;
--- нормализатор подгруппы
в группе
;
--- центр группы
;
--- циклическая группа порядка
;
--- ядро подгруппы
в группе
, т.е. пересечение всех подгрупп, сопряжённых с
в
.
Если и
--- подгруппы группы
, то:
--- прямое произведение подгрупп
и
;
--- полупрямое произведение нормальной подгруппы
и подгруппы
;
---
и
изоморфны.
Группа называется:
примарной, если ;