Курсовая работа: О сверхразрешимости некоторых классов факторизуемых групп
Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.
--- подгруппа, порожденная всеми , для которых выполняется .
, где .
Группу называют:
-замкнутой, если силовская -подгруппа группы нормальна в ;
-нильпотентной, если -холловская подгруппа группы нормальна в ;
-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;
-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;
нильпотентной, если все ее силовские подгруппы нормальны;
метанильпотентной, если существует нормальная нильпотентная подгруппа группы такая, что нильпотентна.
разрешимой, если существует номер такой, что ;
сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.
Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.
Добавлением к подгруппе группы называется такая подгруппа из , что .
Минимальная нормальная подгруппа группы --- неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы .
Цоколь группы --- произведение всех минимальных нормальных подгрупп группы .
--- цоколь группы .
Экспонента группы --- это наименьшее общее кратное порядков всех ее элементов.
Цепь --- это совокупность вложенных друг в друга подгрупп. Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.
Ряд подгрупп называется:
субнормальным, если для любого ;
нормальным, если для любого ;
главным, если является минимальной нормальной подгруппой в для всех .
Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:
--- класс всех групп;
--- класс всех абелевых групп;
--- класс всех нильпотентных групп;
--- класс всех разрешимых групп;
--- класс всех --групп;