Курсовая работа: О сверхразрешимости некоторых классов факторизуемых групп
--- класс всех абелевых групп экспоненты, делящей .
Формации --- это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.
Пусть --- некоторый класс групп и --- группа, тогда:
--- --корадикал группы , т.е. пересечение всех тех нормальных подгрупп из , для которых . Если --- формация, то является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если --- формация всех сверхразрешимых групп, то называется сверхразрешимым корадикалом группы .
Формация называется насыщенной, если всегда из следует, что и .
Класс групп называется наследственным или замкнутым относительно подгрупп, если из того, что следует, что и каждая подгруппа группы также принадлежит .
Произведение формаций и состоит из всех групп , для которых .
Введение
Понятие -перестановочной подгруппы оказалось полезным инструментом в вопросах классификации непростых конечных групп. Отметим, в частности, что классическая теорема Холла о разрешимых группах на языке -перестановочных подгрупп может быть сформулирована так: Группа разрешима тогда и только тогда, когда любые ее две силовские подгруппы -перестановочны. Согласно теореме 3.8 из группа является сверхразрешимой тогда и только тогда, когда все ее максимальные подгруппы -перестановочны со всеми другими подгруппами этой группы. Новые характеризации в терминах -перестановочных подгрупп для класов разрешимых, сверхразрешимых и нильпотентных групп можно найти в работах . Целью данной главы является нахождение новых признаков сверхразрешимости группы на основе условий -перестановочности некоторых ее подгрупп.
1. Факторизуемые группы с -перестановочными подгруппами
В данном разделе, развивая основные наблюдения работы, мы дадим новые критерии сверхразрешимости групп.
Пусть --- группа и --- ее подгруппа Фиттинга. Тогда является сверхразрешимой в том и только том случае, когда , где и --- такие сверхразрешимые подгруппы группы , что каждая подгруппа группы -перестановочна с каждой подгруппой группы .
Доказательство. Необходимость. Пусть --- сверхразрешимая группа. Пусть --- минимальная нормальная подгруппа группы . Тогда для некоторого простого числа . Пусть --- такая максимальная подгруппа группы , что . Тогда , и сверхразрешимы и каждая подгруппа группы перестановочна с каждой подгруппой группы .
Достаточность. Предположим, что --- произведение сверхразрешимых подгрупп и , --- подгруппа Фиттинга группы и каждая подгруппа группы -перестановочна с каждой подгруппой группы , но не является сверхразрешимой группой. Допустим, что --- контрпример минимального порядка. Доказательство разобьем на следующие этапы.
(1) Если --- максимальная подгруппа группы такая, что и либо , либо , то сверхразрешима.
Предположим, что . Тогда по тождеству Дедекинда имеем
.
Так как
то каждая подгруппа группы -перестановочна с каждой подгруппой группы . Поскольку , то по выбору группы мы заключаем, что сверхразрешима.
(2) Для любой неединичной нормальной в подгруппы факторгруппа сверхразрешима.
Ясно, что . Пусть и . Так как по условию для некоторого ,
то мы имеем
где . Это показывает, что каждая подгруппа группы -перестановочна с каждой подгруппой группы . Но поскольку --- произведение сверхразрешимых подгрупп и , то по выбору группы мы заключаем, что сверхразрешима.
(3) Группа имеет абелеву минимальную нормальную погруппу.
Допустим, что . Тогда ввиду (2), --- сверхразрешимая группа и поэтому разрешима. Следовательно, имеет абелеву минимальную нормальную погруппу.
Предположим теперь, что . Пусть --- минимальная нормальная подгруппа группы . Тогда по условию . Предположим, что . Ввиду леммы мы видим, что . Но сверхразрешима, и поэтому минимальная нормальная подгруппа группы , содержащаяся в , абелева. Пусть теперь . Предположим, что и пусть --- такая максимальная подгруппа группы , что . Согласно (1), сверхразрешима, но , и поэтому ввиду леммы , . Это показывает, что минимальная нормальная подгруппа группы , которая содержится в , абелева. Пусть теперь . Так как , то каждая подгруппа группы перестановочна с каждой погруппой группы . Пусть --- минимальная нормальная подгруппа группы . Тогда . Предположим, что . Ввиду леммы мы видим, что . Но сверхразрешима, и поэтому минимальная нормальная подгруппа группы , содержащаяся в , абелева. Пусть теперь . Предположим, что и пусть --- такая максимальная подгруппа группы , что . Согласно (1), сверхразрешима, но , и поэтому ввиду леммы , . Это показывает, что минимальная нормальная подгруппа группы , которая содержится в , абелева. Следовательно, . Поскольку и абелевы группы, то группа имеет абелеву минимальную нормальную подгруппу.