Курсовая работа: Обработка электроэнцефалограмм в частотной области
Электроэнцефалограмма (ЭЭГ) - сигнал, получаемый при регистрации электрической активности головного мозга.
Перед тем, как приступить к описанию методов, с помощью которых автоматизируется анализ ЭЭГ, необходимо сделать одно допущение. Все нижеперечисленные методы, согласно теории обработки сигналов, могут быть применимы для стационарных случайных процессов. Очевидно, что ЭЭГ таковым процессом не является. Обычно в таких случаях при анализе выбирают участки, которые условно можно считать стационарными или, иначе, квазистационарными, и длина которых достаточно велика для получения статистически разумных результатов.
Другой особенностью, выявленной при проведении экспериментов с некоторым достаточно большим количеством ЭЭГ, является то, что в данном случае оценка процесса является скорее качественной, чем количественной. По крайней мере, для электроэнцефалографии нет каких-либо нормативных таблиц основных параметров сигнала, как это имеет место в электромиографии или кардиографии, и каждая ЭЭГ может характеризоваться своей определенной совокупностью параметров. Эти параметры варьируются для разных ЭЭГ, которые при этом могут относиться к одному из классов патологии или быть в норме. Применение алгоритмов обработки стационарных сигналов для анализа ЭЭГ в данном случае можно считать переходом от одной формы отображения информации к другой, более удобной, компактной и информативной. Также стоит отметить, что широко используемые методы обработки ЭЭГ, в общем-то, не учитывают ее биологический генез, а рассматривают ее как некий колебательный процесс и, как следствие, получаемые таким образом результаты не всегда удовлетворяют пользователя. И тот факт, что ЭЭГ представляет собой интегральную оценку электрофизиологической деятельности миллиардов элементарных источников, к тому же отфильтрованной естественными костно-тканевыми распределенными фильтрами, позволяет сказать, что использование рядов Фурье, корреляционного анализа для обработки ЭЭГ можно рассматривать только как более удобное в некоторых случаях изображение той же ЭЭГ и не более.
Некоторые специалисты считают, что достаточно визуального просмотра ЭЭГ, тем не менее, большую популярность начинают завоевывать методы математической обработки и представления сигналов. Так как в электроэнцефалографии основными параметрами являются частота и амплитуда, то необходимо иметь методы оценки сигнала с помощью амплитудно-частотных характеристик. Наибольшее распространение получили методы вычисления спектра мощности сигнала и построение топокартограмм головного мозга с помощью цветового представления амплитуды. Для этого обычно используют преобразования Фурье или, адаптированное для спектрального анализа ЭЭГ, преобразование Berg. Рассмотрим основные алгоритмы определения спектра сигнала.
Первый и наиболее часто используемый способ – использование алгоритма быстрого преобразования Фурье (БПФ). В настоящее время существует множество программных пакетов, созданных специально для реализации алгоритмов БПФ. Но, как показывает практика, использование классического БПФ не всегда удовлетворяет пользователя. Во-первых, несмотря на разнообразие способов ускорения этого алгоритма (оптимизация по периоду анализа, перевод некоторых функций на язык ассемблера), работает он достаточно медленно. Во-вторых, преобразование Фурье обладает некоторыми особенностями, которые отчасти затрудняют согласование получаемых с его помощью данных с данными визуального анализа. Суть их заключается в том, что на ЭЭГ медленные колебания имеют большую амплитуду и длительность, чем высокочастотные. В связи с этим в спектре, построенном по классическому алгоритму Фурье, наблюдается диспропорциональное преобладание низких частот. Для обхождения этого разработано преобразование BERG, специально адаптированное к детектированию быстрых изменений в спектре ЭЭГ и выравнивающее его в зависимости от частоты.
Процедура вычисления преобразования BERG основывается на тех же принципах, что и преобразование Фурье, однако с тем отличием, что для каждой полосы спектра в исследуемой ЭЭГ эпоха анализа выбирается обратно пропорционально частоте и составляет T=16/f (c). Так, соответственно частота 2 Гц вычисляется за 8 с, 4 Гц - за 4 с, 6 Гц - за 2,6 с и т.д. Это преобразование дает результаты более соответствующие субъективным оценкам визуального анализа ЭЭГ при большей точности и надежности информации, и особенно пригодно для детектирования быстро меняющихся колебаний на ЭЭГ, что обеспечивается подчеркиванием более быстрых частот в спектре.
Оба эти алгоритма хороши в том случае, если нет необходимости в высокой скорости обработки процесса. В электроэнцефалографии, когда анализу подвергаются участки записи в несколько десятков секунд, а иногда и минут, они не всегда могут удовлетворять потребностям пользователя или будут требовать мощных и, естественно, дорогих вычислительных ресурсов. Поэтому возникает необходимость разработки более скоростного метода разложения и представления сигнала. Причем следует учитывать, что в данном случае не нужна сверхвысокая точность расчетов, поскольку все же математические методы оценки ЭЭГ дают скорее качественную, чем количественную оценку протекающим процессам. Учитывая эти особенности, здесь для анализа электроэнцефалографического сигнала представлен алгоритм, который можно назвать дискретным преобразованием Фурье с прореживанием по времени. Справедливость использования данного алгоритма объясняется следующим. Так как частоту дискретизации для ЭЭГ не рекомендуется выбирать меньше, чем 200 Гц, а диапазон значимых частот располагается в пределах от 1 до 25 Гц (верхняя частота низкочастотного бета-диапазона), то можно выполнить прореживание дискретного ЭЭГ-сигнала по времени и использовать для анализа каждую четвертую точку. Это равносильно тому, что частота дискретизации уменьшится до 50 Гц. Согласно теореме Котельникова–Шеннона при такой частоте дискретизации без искажения будет передана верхняя полоса в 25 Гц. Для некоторых алгоритмов представления ЭЭГ такое значение будет удовлетворять (в частности, для реализации картирования).
Известно, что любой гармонический сигнал, при разложении его на комплексной плоскости, имеет две составляющие – синусную и косинусную. Поэтому для применения алгоритма дискретного преобразования Фурье необходимо задать массивы значений синусов и косинусов каждой представленной частоты. Точность разложения равна необходимой точности представления частот. Причем длительности этих массивов должны быть равными длине окна анализа алгоритма преобразования Фурье.
С помощью спектра мощности можно легко получить картину распределения ЭЭГ по ритмам, определить доминирующий ритм и доминирующую частоту как всей ЭЭГ, так и каждого отдельного ритма. Построив спектры мощности симметричных отведений левого и правого полушарий, можно оценить степень асимметрии между этими участками по каждому ритму и по каждой конкретной частоте [4].
3 АЛГОРИТМ АНАЛИЗА ЭЛЕКТРОЭНЦЕФАЛОГРАММ В ЧАСТОТНОЙ ОБЛАСТИ
Схема алгоритма показана в приложении А. В начале построения программы вводятся данные сигнала 'eeg_Fp1.txt' (1), которые представлены в виде файла с оцифрованной электроэнцефалограммой.
Далее переходим к вводу периода дискретизации и рассчитываем частоту дискретизации(2).
fd=1/Td;
Рассчитываем частоту Найквиста (2).
fn=fd/2;
После, рассчитываем параметры АЧХ (3), АКФ (4), периодограммы (5), спектрограммы (6).
Устанавливаем параметры фильтра для выделения альфа-ритма (7,8) и фильтруем сигнал (9). Рассчитываем параметры АЧХ (11), АКФ (10), периодограммы (12) и спектрограммы (13) для альфа-ритма сигнала.
Результаты выводятся на экран в двух окнах программной среды MatLab. Затем с помощью программы анализируются сигналы eeg_Fp2.txt, eeg_T4.txt, eeg_C3.txt, eeg_P4.txt.
4 ПРОГРАММА АНАЛИЗА ЭЭГ
Для реализации алгоритма анализа ЭЭГ используется программный пакет MATLAB.
Для чтения и обработки данных из файлов 'eeg_Fp1.txt', 'eeg_Fp2.txt', 'eeg_T4.txt', 'eeg_C3.txt', 'eeg_P4.txt' использовались следующие функции:
fid=fopen('EEG\eeg_T4.txt','rt'); – функция, позволяющая открыть файл исходного сигнала ЭЭГ;
f - считывание данных с файла;
fid – идентификатор файла;
[2,512] – размер;
fd - период дискретизации;
t – вектор времени;
y – вектор сигнала ЭЭГ;
fclose – функция, реализующая закрытие файла идентификатора;
fd – частота дискретизации;
subplot – разбивает окно для построения в нем нескольких графиков;