Курсовая работа: Операторные уравнения
II. Найдем теперь x1(t), для этого необходимо решить следующее уравнение системы (4) §7: А0x1+А1x0 = y1. Так как y1=0 в нашем случае, то мы будем решать уравнение А0x1= – А1x0.
Обозначим , т.к. мы знаем теперь x0(s), следовательно φ(t) можно вычислить. Имеем:
Как в предыдущем случае заменим, , поэтому
. (7)
где , .
Умножим уравнение (7) на cos t и проинтегрируем по t от –π до π – получим коэффициент А:
Подсчитав: , , ,
имеем .
Аналогично умножив уравнение (7) на sin t и проинтегрируем по t от –π до π – получим коэффициент В: .
Составляем функцию x1(t), подставив коэффициенты А и В в уравнение и свернув равенство по формуле косинуса разности:
.
Таким способом мы можем найти все остальные решения уравнения с любой степенью точности.
Пример 2. Применим метод продолжения по параметру для оценки разрешимости краевой задачи для дифференциального уравнения, а потом решим ее методом малого параметра.
–x'' + b(t)x' +c(t)x = y(t), 0< t <1, (1)
x(0) = x(1) = 0 (2)
Здесь c(t) непрерывна на [0, 1], b(t) непрерывно дифференцируема на [0, 1]. Предположим еще, что на [0, 1] c(t) – b(t)'/2 ≥ α > –8/π (*).
Покажем методом продолжения по параметру, что в этих условиях при всякой правой части y ÎY = С [0, 1] существует единственное решение задачи x Î X = С2 [0, 1] – пространству, состоящему из дважды непрерывно дифференцируемых на [0, 1] функций x(t), удовлетворяющих граничным условиям (2), и с нормой , где .
Запишем задачу (1) – (2) в операторном виде: Вx = y
Здесь определен всюду на X со значениями в Y. В качестве оператора А примем ÎL(X, Y).
Соединим операторы А и В отрезком
, λ Î [0, 1].
Теперь необходимо установить априорную оценку для решений краевой задачи
–x'' + λb(t)x' + λc(t)x = y(t), 0< t <1, (3)
x(0) = x(1) = 0 (4)
Как только такая оценка будет получена, из теоремы п.8.1. будет следовать однозначная разрешимость краевой задачи (3) – (4).