Курсовая работа: Определение энергосиловых параметров
Когда τк достигнет максимальной величины k, уравнение (15) получит вид:
(17)
Дифференцируя уравнения (6) и (17), получаем уравнение пластичности в дифференциальной форме:
(18)
точное при указанных выше условиях постоянства или независимости τк от σx и σz.
Если τк зависит от нормального напряжения σz, как в нашем случае, при изменении τк от нуля до 0,7k для приближённых расчётов можно пользоваться уравнением пластичности в форме (6), а при 0,7k < τк ≤ k - в форме (15). Тогда выражение (17) является приближённым.
Подставив выражения (13) и (18) в уравнение (12), получим:
(19)
После разделения переменных и интегрирования находим:
(20)
Отсюда
(21)
Постоянную интегрирования C1 определим из граничного условия (при x=b, σz = - β∙σт = - σт):
(22)
Следовательно,
(23)
(24)
По формуле (23) можно определить σz в любой точке контактной поверхности.
Зона скольжения – участок где металл скользит по инструменту, контактное касательное напряжение является напряжением трения скольжения и подчиняется закону Кулона - Амонтона (напряжение трения равно произведению коэффициента трения на нормальное давление). На этом участке касательные напряжения возрастают, пропорциональны нормальному напряжению и изменяются от (х =0,5∙а) до (х = хв = 0,5∙а - ψ∙h).
Изменение нормального напряжения описывается уравнением:
Изменение касательного контактного напряжения - уравнением:
Однако увеличение абсолютной величины с уменьшением х может происходить до значения.
Эпюра нормальных напряжений в зоне скольжения – возрастающая показательная кривая. Эпюра касательных напряжений в зоне скольжения – возрастающая показательная кривая.
Вариант 1
Крайние значения:
При х = 0,5∙140 = 70 мм:
МПа.