Курсовая работа: Оптимальная фильтрация сигналов

Для вычисления |S (w) | и jS (w) ФМК - сигнала более целесообразно свести путем дифференцирования исходного сигнала к линейной комбинации дельта-функций d (t-kt0 ), спектр которых вычисляется элементарно.

Выражение для спектральной функции сигнала примет вид:

,

где bk - значение величины скачка напряжения исходного сигнала S (t) с обозначением полярности в моменты времени kt0 (k=0,1,…,N).

Выражение для спектральной функции представим в виде:

S (w) =A (w) - jB (w),

тогда амплитудный и фазовый спектры можно записать следующим образом:

Для контроля частично определяются |S (2pf) | и jS (2pf) для трех значений частоты f, взятых в интервале 0<f<fа , где

активная ширина спектра ФКМ - сигнала (ширина главного лепестка амплитудного спектра).

F, кГц 20 80
S (2pf), В/мГц 25,42 6,35
jS (2pf), рад. -87,51 -92,5

Точки отмечены крестиками.

Для самоконтроля вычислим очевидные соотношения:

Таким образом, можно убедится в правильности найденных спектров.

Верхняя граничная частота спектра сигнала fВ определяется при помощи ЭВМ или по графику по амплитудного спектра из условия |S (2pf) |£0.1|S (2pf) | при f³fВ . fВ =264.39 кГц.

Энергия сигнала определяется в соответствии с равенством Парсеваля.

помеха фильтрация сигнал частотный

Расчет АКФ и ВКФ

АКФ сигнала определяется выражением

Т.к. используемые в курсовой работе ФКМ - сигналы имеют дискретный характер, то вычисление можно существенно упростить, воспользовавшись дискретным аналогом АКФ, т.е. вычислить АФ в узловых точках, по формуле:

где n=0,N-1, и iи n - номера позиций; аi , ai - n - значения сигнала и его сдвинутой копии на каждой позиции. Учитывая что АКФ функция четная, нам необходимо вычислить значения KS (n) для n<0.

К-во Просмотров: 371
Бесплатно скачать Курсовая работа: Оптимальная фильтрация сигналов