Курсовая работа: Оптимізація портфелю цінних паперів (з урахуванням ризиків)

Модель Шарпа застосовується в основному при розгляді великої кількості цінних паперів, що описують велику частину фондового ринку. Основний недолік моделі – необхідність прогнозувати доходність фондового ринку та безризикову ставку доходності. Не враховується ризик коливань безризикової доходності. Крім того, при значній зміні співвідношення між безризиковою доходністю та доходністю фондового ринку модель дає похибки.

Основні припущення моделі Шарпа:

­ як доходність цінного папера береться математичне очікування доходності;

­ існує деяка безризикова ставка доходності Rf, тобто доходність якогось цінного папера, ризик якого завжди мінімальний у порівнянні з іншими цінними паперами;

­ взаємозв'язок відхилень доходності цінного папера від безризикової ставки доходності (далі відхилення доходності цінного папера) з відхиленням доходності ринку в цілому від безризиковоі ставки доходності (далі: відхилення доходності ринку) описується функцією лінійної регресії;

­ під ризиком цінного папера слід розуміти ступінь залежності змін доходності цінного папера від змін доходності ринку в цілому;

­ вважається, що дані минулих періодів, які використовуються при розрахунку доходності та ризику, відображають повною мірою майбутні значення доходності.

За моделлю Шарпа відхилення доходності цінного папера пов'язуються з відхиленнями доходності ринку функцією лінійної регресії виду:

(ri — Rf) = a + b(Rm — Rf) (1.8)

де (ri — Rf ) — відхилення доходності цінного папера від безризикового;

(Rm — Rf ) — відхилення доходності ринку від безризикового;

a, b — коефіцієнти регресії.

Виходячи з формули (1.8), можна по прогнозованій доходності ринку цінних паперів у цілому розрахувати доходність будь-якого цінного папера, що його складає:


Ri = Rf + ai + bi(Rm — Rf) (1.9)

Де ai , bi — коефіцієнти регресії, що характеризують даний цінний папір.

Коефіцієнт b називають b-ризиком, оскільки він характеризує ступінь залежності відхилень доходності цінного папера від відхилень доходності ринку в цілому. Основні переваги моделі Шарпа — математично обгрунтована взаємозалежність доходності та ризику: чим більший b-ризик, тим вища доходність цінного папера.

Крім того, модель Шарпа має особливість: існує небезпека, що оцінюване відхилення доходності цінного папера не належатиме побудованій лінії регресії. Цей ризик називають залишковим ризиком. Залишковий ризик характеризує ступінь розбросу значень відхилень доходності цінного папера навколо лінії регресії. Залишковий ризик визначають як середньоквадратичну відстань від точок доходності цінного папера до лінії регресії. Залишковий ризик і-го цінного папера позначають sei .

За моделлю Шарпа доходність портфеля цінних паперів — це середньозважена доходність цінних паперів, що його складають, з урахуванням b-ризику цінних паперів. Доходність портфеля визначається за формулою:

(1.10)

Де Rf — безризикова доходністъ;

Rm — очікувана доходність ринку в цілому.

Ризик портфеля цінних паперів може бути знайдений за допомогою оцінки середнього квадратичного відхиления функціі (1.10), і визначається за формулою:


(1.11)

де sm — середньоквадратичне відхилення доходності ринку в цілому, тобто ризикованість ринку в цілому;

bi , sei — b-ризик і залишковий ризик і-го цінного папера.

При використанні моделі Шарпа для розрахунку характеристик портфеля пряма задача набуває вигляду:

(1.12)

Зворотня задача виглядає аналогічним чином:

(1.13)

К-во Просмотров: 320
Бесплатно скачать Курсовая работа: Оптимізація портфелю цінних паперів (з урахуванням ризиків)