Курсовая работа: Оценивание смещения статистики взаимной спектральной плотности многомерного временного ряда
, .
Корреляционной функцией случайного процесса , , называется функция вида
, .
Ковариационной функцией случайного процесса , , называется функция вида
.
Заметим, что если , то , .
Смешанным моментом го порядка , , случайного процесса , , называется функция вида
, , .
Заметим, что
, .
Пусть - значения случайного процесса в точках .
Смешанный момент го порядка, , можно также определить как
, , .
Смешанным семиинвариантом ( кумулянтом ) го порядка, , случайного процесса , , называется функция вида
, , ,
которую также будем обозначать как .
Между смешанными моментами и смешанными семиинвариантами го порядка, , существуют связывающие их соотношения, которые имеют вид
(1.1)
(1.2)
суммирование по всевозможным разбиениям множества .
Спектральной плотностью случайного процесса , , называется функция вида
=, ,
при условии, что
.
Из определения видно, что спектральная плотность непрерывная, периодическая функция с периодом, равным по каждому из аргументов.
Семиинвариантной спектральной плотностью го порядка, , случайного процесса , , называется функция вида