Курсовая работа: Оценивание смещения статистики взаимной спектральной плотности многомерного временного ряда
при условии, что
.
Лемма 1. Для любого целого справедливо соотношение
(1.3)
Теорема 1. Для смешанного семиинварианта го порядка, , случайного процесса справедливы представления
, (1.4)
Доказательство. Домножая обе части соотношения (1.1) на
, ,
и интегрируя обе части полученного неравенства по на , получим
.
Используя лемму 1, получим при требуемый результат. Теорема доказана.
Лемма 2. Если функция интегрируема и периодична с периодом , то для любого действительного имеет место соотношение
Доказательство . Предположим, что >0. Можно записать
В третьем слагаемом правой части последнего равенства сделаем замену переменных интегрирования и, учитывая периодичность с периодом функции , получаем требуемое. Случай, когда <0, доказывается аналогично. Лемма доказана.
Спектральной плотностью случайного процесса , , называется функция вида
=, ,
при условии, что
.
Из определения видно, что спектральная плотность непрерывная, периодическая функция с периодом, равным по каждому из аргументов.
2. ОЦЕНИВАНИЕ СМЕЩЕНИЯ СТАТИСТИКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ
Рассмотрим действительный стационарный в широком смысле случайный процесс,, с математическим ожиданием , , взаимной ковариационной функцией , и взаимной спектральной плотностью .
Предположим, имеются Т последовательных, полученных через равные промежутки времени наблюдений за составляющей , рассматриваемого процесса . Как оценку взаимной спектральной плотности в точке рассмотрим статистику
(2.1)
где , - произвольная, не зависящая от наблюдений четная целочисленная функция, для , а
(2.2)
s – целое число, - целая часть числа .
Статистика , называемая выборочной взаимной спектральной плотностью или периодограммой, задается соотношением