Курсовая работа: Перетворювач СКЗ змінної напруги
Рис. 1.1.1 Схеми вимірювання постійногоструму і напруги.
Єлектромагнітними амперметрами можна безпосередньо вимірювати струми до 300 А (прилади інших систем випускають на струми до 10 А). Для розширення меж вимірювання амперметрів зміного струму використовують вимірювальні трансформатори струму
Похибка вимірювання складається з похибок амперметра і коефіцієнта трансформації. Щоб зменшити вплив останньої , клас точності вимірювального трансформатора беруть завжди вищим, ніж у амперметра.
Схему, наведену на рис 1.1.2,а можна застосовувати і для вимірювання струмів окремих фаз у трифазних колах. Якщо напруга досліджуваного кола перевищує 600В
то вторинну обмотку і корпус трансформатора заземляють.
Особливістю схеми поданої на рис 1.1.2б є можливість вимірювання струмів усіх трьох фаз трипровідної мережі при застосуванні лише двох вимірювальних трансформаторів струму. При рівності коєфіцієнтів трансвормації обох трансформаторів струм за показом амперметра А2 буде пропорційний геометричній сумі І1+І3 , яка для трипровідної трифазної мережі за модулем дорівнює І2 при будь– якому розподілі навантаження між фазами . Аналогічно в чотирипровідній трифазній мережі можна вимірювати чотири струми при застосуванні трьох трансформаторів струму (рис 1.1.2,в)
Напруги, значення яких перевищують 600В , вимірюють застосовуючи вимірювальні трансформатори напруги
Для схеми а)
Ux = Ku*Uv ,
Де Ku –коефіцієнт трансформації трансформатора напруги ;
Uv– напруга за показом вольтметра.
На похибку вимірювання впливає похибка коефіцієнта трансформації трансформатора напруги, тому треба , щоб його клас точності був завжди вищим ніж у вольтметра.
Для вимірювання напруги в трифазних колах найчастіше користуються схемою поданою на рис 1.1.3 б , у якої для вимірювань трьох лінійних напруг використано лише два трансформатора напруги.
Для вимірювання високих змінних напруг (до 300 кВ) можна також застосувати електростатичні вольтметри .
Компенсаційний метод вимірювань.
Компенсатори змінного струму застосовуються для вимірювань струму й напруги переважно тоді , коли крім модуля треба визначити і фазу вимірювальної величини.
Взагалі принципи їх застосування є такими самими, як і для компенсаторів постійного струму. Зокрема , для розширення меж вимірювання напруги застосовують подільники напруги ; вимірювання струму здійснюється через вимірювання спаду напруги на відомому опорі ; залишаються в силі і рекомендації щодо вибору значення зразкового опору та коефіцієнта ділення подільника напруги.
Проте застосування цих компенсаторів має ряд особливостей. Так , наприклад , у подільниках напруги, а також при вимірюванні струму застосовують безреактивні або частотно – скомпенсовані резистори. Можливе також використання індуктивних або ємнісних подільників напруги (особливо на підвищених частотах).
Умови компенсації виконуються лише при однакових частотах компенсуючої та вимірюваної напруги, тому живлення кола робочого струму компенсатора і досліджуваного об”єкта здійснюється від одного джерела (живлення від різних джерел можливе при умові жорсткої синхронізації , наприклад від двох генераторів, ротори яких з”єднані для спільного обертання ). Гальванічне розділення кіл компенсатора і досліджуючого об”єкта забеспечується застосуванням трансформатора Тр.
При визначенні кута зсуву фаз змінного струму або напруги слід памятати про необхідність встановлення початкового положення вектора , від якого ведеться відлік. При використані прямокутно-координатного компенсатора за початковий приймають вектор струму живлення компенсатора , який збігається вектором напруги координати Х. Використовуючи допоміжний фазорегулятор , фазу струму можна сумістити з фазою того вектора напруги (або струму) досліджуваного кола , від якого бажано проводити відлік.
Вимірювання змінного струму й напруги з високою точністюю.
Компенсатори зміного струму та прилади прямого претворення забеспечують вимірювання струму й напруги з похибкою , що не первищує 0.1% . Для точніших вимірювань застосовують компаратори – пристрої для порівняння змінного струму (напруги) з сталою напругою. Спрощені схеми вимірювання струму й напруги з допомогою термоелектричного компаратора , найбільш поширеного на практиці , подано на рис 1.1.5
Для порівняння діючих значень постійного і змінного струмів використовують термоелектричний перетворювач (ТП) , що складається з нагрівача і термопари , та мікровольтметр. Спочатку перемикач П ставлять в положення 1 (рис. 1.1.5,а) і через нагрівач ТП пропускають вимірюваний змінний струм Іx. Внаслідок нагрівання робочого спаю термопари струмом Іх на її вільних кінцях утворюється е.р.с. Етх , значення якої пропорційне квадрату діючого значенню струму Іх тобто
Етх = Ктп Іх 2 ,
Де Ктп – коефіцієнт перетворення ТП.
Вимірявши з допомогою мілівольтметра Етх , перемикають П в положення 2 і регулюють значення постійного струму, щоб дістати е.р.с. Еtn , яка дорівнює Етх .
Враховуючи що Еtn =Kt п *Іn 2 (значення Ктп для постійного і змінного струмів мають бути однаковими), маємо In 2 =Ix 2 або In =Ix (для діючих значень). Таким чином , вимірявши компенсатором постійного струму значення Іn , визначаємо Іх .
На відміну від схеми вимірювання струму , схема вимірювання напруги має додатковий опір Rд до нагрівача. Для розширення меж вимірювання струму компаратором можна застосувати шунти. Похибки вимірювання змінного струму та напруги залежать в основному від рівності значень коефіцієнта перетворення Ктп на постійному і змінному струмі. Вони зростають із збільшенням частоти внаслідок впливу поверхневого ефекту в нагрівачі і паразитних провідностей. Для підвищення точності “запамятовування” е.р.с. Ет замість мілівольтметра використовують компенсатор постійного струму.