Курсовая работа: Плоскі діелектричні хвилеводи для ТІ поляризації
Одержали ще одне хвильове рівняння, у скалярному виді. Його рішення буде мати вигляд: , де - комплексна постійна поширення, а k – одиничний вектор у напрямку поширенні хвилі. Дійсна частина постійної поширення являє собою коефіцієнт поглинання по амплітуді, а мнима частина – модуль хвильового вектора .
У випадку плоскої хвилі вектори E,H,k ортогональні й відношення модулів векторів E,H :
є характеристичний хвильовий імпеданс.
2. Параметри середовища
При описі поширення хвилі в середовищі, крім і часто використовуються інші параметри , наприклад : - довжина хвилі у вакуумі, що відрізняється від - довжини хвилі в середовищі. - показник переломлення в середовищі.
3. Граничні умови
Виходячи з умов Максвелла в інтегральній формі, можна визначити умови для векторів E,D,H,B на границі роздягнула двох середовищ, з різними й .
(19)
(20)
(21)
(22)
Де індексом i позначені частки векторів, дотичні до поверхні роздягнула двох середовищ 1 і 2. А індексом n – частки нормальні до цієї поверхні. Величина J – щільність поверхневих струмів провідності, а - щільність електричних зарядів, причому в тих випадках, які ми будемо розглядати, вони дорівнюють нулю. Цього ж рівняння можна представити у векторній формі, якщо ввести в розгляд одиничний вектор нормалі до границі роздягнула.
У такий спосіб:
4. Формули Френеля
Нехай А - амплітуда електричного вектора поля падаючої хвилі. Будемо вважати її комплексною величиною з фазою , рівної постійної частини аргументу хвильової функції. Змінна її частина має вигляд:
Тепер розкладемо вектор на паралельну й перпендикулярну тридцятилітні:
Компоненти магнітного вектора виходять зі співвідношення
Звідси
Граничні умови й вимагають щоб на границі тангенціальна тридцятилітні векторів E і H були безперервні. Отже, потрібно зажадати виконання наступних співвідношень
Тепер можна одержати важливі співвідношення (рівняння):