Курсовая работа: Полимерные композиты на основе диальдегилцеллюлозы и полигуанилинметакрилата

При использовании синтетических биоцидных полимеров следует учитывать их биодеградируемость в живом организме. В случае использования небиодеградируемых синтетических полимеров существенное значение имеет их молекулярная масса, поскольку полимеры с молекулярной массой выше 50000 не могут выводиться через почки, а накапливаются в почечных канальцах, вызывая выраженные токсические эффекты. В этом отношении биоцидный эффект гуанидиновых соединений физиологичен, и в живом организме имеются ферментные системы, способные вызывать деградацию этих соединений, предотвращая их кумуляцию [28].

1.2 Биологически активные полимеры

Известно, что биологически активные полимеры должны удовлетворять ряду требований:

1) хорошо растворяться в воде и солевых растворах;

2) быть биосовместимыми, не обладать высокой токсичностью, не подавлять иммунную систему;

3) иметь небольшую скорость выведения и выводиться из организма после выполнения своей функции;

Все это накладывает определенные требования к их структуре, молекулярной массе и молекулярно - массовому распределению (ММР).

Чаще всего синтетические биологически активные полимеры представляют собой гибрид синтетического полимера-носителя с биологически активным веществом, Биологическая активность таких гибридных систем определяется в основном свойствами присоединенного к полимеру-носителю вещества.

Одним из способов получения водорастворимых биологически активных полимеров является синтез гидрофильных мономеров на основе гидрофобных биологически активных веществ (БАВ) и ионогенных ненасыщенных карбоновых кислот (акриловой, метакриловой и т.п.)

Метакриловая и акриловая кислота и их производные характеризуются значительной реакционной способностью в реакциях радикальной гомо- и сополимеризации. Производные метакриловой кислоты, содержащие химически активные функциональные группы, представляют собой перспективный ряд мономеров. Соответствующие им полимеры могут сохранять потенциал активности, являясь удобными носителями биологически активных веществ. Потребность в них применительно к самым разнообразным отраслям, начиная от техники и кончая медициной, естественно стимулирует и, несомненно, оправдывает необходимость изучения особенностей протекания процессов синтеза и механизма образования этого класса полимерных соединений [28, 29].

1.3 Строение целлюлозы

Целлюлоза - важнейший представитель полисахаридов, одного из классов природных полимеров, макромолекулы которых построены из элементарных звеньев (остатков) различных моносахаридов, соединенных между собой ацетальной (гликозидной) связью. Макромолекула целлюлозы состоит из остатков D-глюкозы - моносахарида, углеродный скелет молекулы которого содержит шесть атомов углерода. При этом элементарное звено имеет структуру шестичленного кислородсодержащего гетероцикла, а в образовании гликозидной связи между элементарными звеньями наряду с альдегидной группой, расположенной у первого углеродного атома одного элементарного звена, принимает участие гидроксильная группа у четвертого углеродного атома соседнего звена.

Важной характеристикой строения макромолекулярной цепи полисахаридов является не только направление гликозидной связи, но и ее конфигурация. Гликозидная связь в макромолекуле целлюлозы имеет (3-конфигурацию (обозначение, принятое для связи, имеющей противоположную пространственную ориентацию по сравнению с конфигурацией асимметрического углеродного атома С-5 в молекуле глюкозы). Гликозидные связи сравнительно легко подвергаются расщеплению под действием воды в присутствии кислотных катализаторов (процесс гидролиза). Это обстоятельство обусловливает относительную неустойчивость целлюлозы к действию водных растворов кислот. В то же время в условиях щелочного гидролиза гликозидные связи целлюлозы достаточно стабильны. Однако эта стабильность характерна лишь для систем, в которых отсутствует молекулярный кислород. Наличие же кислорода приводит к изменению механизма реакции - переходу от чистого гидролиза к значительно более сложному процессу, включающему последовательно протекающие реакции окисления и гидролиза [30].

Возможность получения разнообразных производных целлюлозы определяется в первую очередь ее функциональным составом. С этой точки зрения целлюлозу можно рассматривать как полимерный полиатомный спирт, в элементарных звеньях макромолекул которого содержатся три гидроксильные группы: первичная - у шестого атома углерода и две вторичные -у второго и третьего атомов углерода. Элементарное звено макромолекулы целлюлозы находится в энергетически наиболее выгодной конформации кресла С1, в которой гидроксильные и гидроксиметильная группы расположены экваториально (то есть располагаются приблизительно в плоскости, образуемой вторым, третьим и пятым атомами углерода и атомом кислорода пиранозного цикла) и благодаря такому положению обладают высокой реакционной способностью в различных химических реакциях. Именно индивидуальные свойства гидроксильных групп позволяют в результате их химических превращений осуществить синтез простых и сложных эфиров целлюлозы, продуктов ее окисления.

Особое внимание уделяется целлюлозе как представителю класса природных высокомолекулярных соединений, поскольку имеется возможность ее воспроизводства в природных условиях в процессе фотосинтеза, а также разнообразие свойств и, соответственно, областей применения многочисленных производных целлюлозы. За последние десятилетия появилась большая группа материалов, при получении которых были реализованы различные подходы модификации целлюлозы: термические превращения, синтез привитых сополимеров, образование пространственной структуры. Все это позволило создать углеродные и другие сорбционно-активные материалы, материалы медицинского назначения с пролонгированным эффектом действия лекарственных препаратов, волокна-биокатализаторы, содержащие иммобилизованные ферменты, повысить эластические характеристики текстильных материалов из целлюлозных волокон. На более отдаленную перспективу целлюлозу можно рассматривать как источник экологически чистого возобновляемого сырья для создания новых технологических процессов получения мономеров для синтетических полимеров [33].

1.4 Окисление целлюлозы

Действие окислителей на целлюлозу имеет место во многих производственных процессах, основанных на переработке целлюлозы или целлюлозосо-держащих растительных материалов.

Процесс окисления целлюлозы представляет большой научный интерес, так как путем избирательного окисления отдельных спиртовых групп удаётся ввести в макромолекулу целлюлозы новые функциональные группы - карбонильные (альдегидные и кетоновые) или карбоксильные - и получить препарат окисленной целлюлозы, обладающей новыми свойствами.

В качестве окислителей целлюлозы могут быть применены реагенты, окисляющие первичные или вторичные спиртовые группы, либо приводящие к образованию перекисных соединений.

Продукты, которые получаются при действии окислителей на целлюлозу, и которые в результате частичного окисления гидроксильных групп отличаются по химическому составу от исходной целлюлозы, носят название оксицеллюлоз. В большинстве случаев процесс частичного окисления спиртовых групп сопровождается понижением степени полимеризации целлюлозы. Известен, однако, ряд методов получения оксицеллюлоз, при которых деструкции целлюлозы не происходит. В отличие от условий образования про-

дуктов гидролиза целлюлозы процесс окисления целлюлозы не сопровождается обязательным снижением степени полимеризации целлюлозы. Процесс окисления целлюлозы протекает в несколько стадий. В начальной стадии происходит частичное окисление спиртовых групп целлюлозы или, возможно, присоединение кислорода к гликозидному гидроксилу с образованием перекисных соединений. На дальнейших стадиях процесса окисления в большинстве случаев происходит деструкция макромолекул целлюлозы и при более интенсивном окислении - образование низкомолекулярные моно- и дикарбоновых оксикислот. При полном окислении целлюлозы образуются углекислый газ и вода.

Продукты окисления целлюлозы не являются химически физически однородными.

Неоднородность по величине макромолекул и по химическому составу оксицеллюлоз, получаемых при действии различных окислителей на целлюлозу, так же как неоднородность других производных целлюлозы, объясняется следующими факторами:

1) неодинаковой доступностью макромолекул или их звеньев, действию окислителей и, следовательно, различной скоростью их окисления;

2) избирательным действием некоторых окислителей на первичные или вторичные спиртовые группы целлюлозы;

3) различной степени деструкции макромолекул целлюлозы в процессе окисления.

Препараты, получаемые при окислении целлюлозы, являются химически неоднородными продуктами. Они отличаются по характеру функциональных групп, образующихся при окислении спиртовых групп целлюлозы. Кроме того, при окислении целлюлозы могут получаться вещества с различным положением образовавшихся функциональных групп в элементарных звеньях макромолекул окисленной целлюлозы, т.е. изомерные соединения. Поэтому продукты окисления целлюлозы, получаемые по разным методам, значительно различаются как по составу, так по свойствам [33, 34].

При действии окислителей на целлюлозу могут иметь место следующие реакции избирательного окисления отдельных групп:

К-во Просмотров: 245
Бесплатно скачать Курсовая работа: Полимерные композиты на основе диальдегилцеллюлозы и полигуанилинметакрилата