Курсовая работа: Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка
BirthNEW – численность рожденных детей за 2007г. (чел.),
MortalityNEW – численность умерших за 2007г. (чел),
OldNEW – численность населения в возрасте от 65 лет и старше (чел.).
Проверим на значимость коэффициенты уравнения регрессии. Для этого оценим t-статистику. Используем в данном случае уровень значимости . Тогда критическое значение t-статистики соответственно:
Если значения t-статистик рассматриваемых переменных больше критического значения (критерий Стьюдента), следовательно делаем вывод о их значимости. Лишь одна переменная, являющаяся в прошлой базовой модели константой в данном случае незначима, что логично, ведь она не имеет реального смысла, т.е. не описывает реальным образом объясняемую переменную. По анализу исследованных t-статистик и коэффициента детерминации R-квадрат делаем предварительный вывод об адекватности построенной модели.
Продолжая оценивать общее качество модели, используем критерий Фишера:
Н0: R-квадрат=0
Н1: R-квадрат>0
Так как F-наблюдаемое больше F-критического, принимаем гипотезу Н1, согласно которой модель адекватна.
Проверим модель на присутствие автокорреляции. Для этого будем использовать тесты Бреуша-Годфри и Дарбина-Уотсона.
1) Первоначально воспользуемся тестомБреуша-Годфри и оценим модель на присутствие автокорреляции по трем лагам:
Запишем значение распределения для последующего сравнения с Obs* R-squared:
Приведем результаты теста с lag = 1:
с lag = 2:
с lag = 3:
Сделаем выводы об отсутствии серийной корреляции, так как во всех трех случаях Obs* R-squared меньше
а P-вероятность статистики Бреуша-Годфри больше уровня значимости
()
2) Воспользуемся также тестом Дарбина-Уотсона:
Приведем значение статистики: