Курсовая работа: Построение эконометрической модели и исследование проблемы гетероскедастичности с помощью тестов Вайта, Бреуша-Пагана-Годфри и Парка
при уровне значимости :
Делаем вывод об отсутствии автокорреляции, т.к. значение статистики D-Wв данном случае близко к 2.
Проверим скорректированную модель на наличие гетероскедастичности с помощью теста Вайта
Т.к. значение P- вероятности в обоих случаях теста Уайта (nocrossterms/ crossterms) больше уровня значимости
()
и Obs* R-squared превышает
то принимаем гипотезу об отсутствии гетероскедастичности в модели (гомоскедастичность).
Заключение
В моей курсовой работе я построила регрессионную модель по реальным данным. Я разбиралась с моделью зависимости общей численности населения от показателей рождаемости, смертности и численности пожилого населения, их влиянием друг на друга и на объясняемую переменную. Так как целью моей работы являлось проверить, как работают на практике тесты Уайта и Бреуша-Пагана-Годфри и Парка, то я использовала пространственные данные, которые позволяют наиболее наглядно проиллюстрировать проблему гетероскедастичности и способы ее устранения.
В работе достаточно наглядно продемонстрирована работа тестов для выявления гетероскедастичности, также удалось решить задачу с выбором веса для ВНК.
В ходе курсовой работы мне удалось скорректировать модель с помощью метода взвешенных наименьших квадратов, правильно подобрав вес при помощи теста Бреуша-Пагана, поскольку тест Вайта, к примеру, не дает нам точного ответа на вопрос о весе для ВНК. Построенная в конце моего исследования модель-NEW значима и является качественной, остатки ее в свою очередь гомоскедастичны.
Список использованных источников:
1. Бородич С.А. Вводный курс эконометрики: Учеб. пособие. – Мн.; БГУ, 2000. – 209, 227, 245 с.
2. Бородич С.А. Эконометрика: Учеб. пособие. – Мн.; Новое знание, 2006. – 237, 238 с.
3. Доугерти К. Введение в эконометрику: Пер. с англ. – М.; ИНФРА-М, 1997.
4. Данные Eurostathttp://epp.eurostat.ec.europa.eu/potal.