Курсовая работа: Построение математических моделей методом идентификации
Поскольку результаты наблюдений суть случайные величины, получить «истинные» значения коэффициентов из модели
;(1.2)
нельзя. Вместо этого можно получить их оценки на основе исследований по таблице предварительно составленных наблюдений. Если речь идет о модели (1.2), то она принимает вид
,(1.3)
где ─ предсказанное значение отклика и служит оценкой истинного значения
. Величина отклика служит оценкой «истинного» значения
. В регрессионном анализе для получения оценок коэффициентов модели (1.2) используется МНК.
Из-за действия случайных возмущений предсказанное значение будет отличаться от результата измерения
. Разности
,
, называют остатками.
Так как истинное значение вектора коэффициентов β и его оценка b различны,
, а
.
Отсюда вектор остатков:
.
Оценки коэффициентов регрессии естественно искать так, чтобы обеспечить наименьшие возможные остатки, но остатки многочисленны, поэтому нужна некоторая суммарная характеристика, которая должна зависеть от различий между измеренными и предсказанными значениями выходных характеристик в каждом опыте. Такую функцию обычно называют функцией потерь, или функцией риска. Для различных целей и условий исследования она может иметь разный вид.
Вот одна из наиболее часто используемых функций потерь:
.(1.4)
В ней остатки возведены в квадрат, чтобы компенсировать различия в их знаках.
Запишем сумму (1.4) в векторной форме. Пусть
обозначает N-мерный вектор столбец измеренных значений отклика, а
N-мерный вектор соответствующих им предсказанных значений, наконец,
вектор-столбец остатков. Как известно, скалярное произведение вектора на самого себя равно сумме квадратов его элементов, поэтому выражении (1.4) можно переписать в виде
.(1.5)
Метод, позволяющий оценивать регрессионные коэффициенты, выбирают так, чтобы минимизировать величину Q. Его называют обычно методом наименьших квадратов.
Пусть на основе данных таблицы исследования нужно найти такие оценки коэффициентов регрессии, которые минимизируют сумму Q, определенную в (1.4), минимум получим, приравняв производные по неизвестным оценкам к нулю. Но сначала подставим (1.2) в (1.4):
.(1.6)
После дифференцирования этого выражения по искомым оценкам и приравнивания нулю первых производных получаем систему уравнений:
(1.7)