Курсовая работа: Построение математических моделей методом идентификации

Требуется:

1. Записать модель объекта в пространстве состояний.

2. Записать модель объекта в форме передаточной функции.

3. Получить частотные характеристики объекта.

2.2 Математическая постановка задачи

Рассмотрим систему автоматического управления (САУ), описываемую линейным (линеаризованным) дифференциальным уравнением вида:

(2.1)

где u(t) – входной процесс, y(t) – выходной процесс, ai , bj – постоянные коэффициенты, n, m (n>m)– постоянные числа. В операторной форме выражение (2.1) может быть записано .

Здесь D – оператор дифференцирования . Отсюда преобразование “вход-выход” системы:

где W(D) называется операторной передаточной функции.

Один из способов моделирования систем заключается в представлении преобразования “вход-выход” в виде комплексной передаточной функции:

которая получается путем применения преобразования Лапласа к (2.2) ри начальных нулевых условиях. Здесь s-комплексная переменная. Связь между операторной (2.2) и комплексной (2.3) передаточными функциями можно записать в виде:

Комплексные числа, являющиеся корнями многочленаВ(s), называются нулями передаточной функции, а корни многочлена A(s) – полюсами.

Явный вид связи входа и выхода определяется выражением:

где w(t) – оригинал (т.е. полученный с помощью обратного преобразования Лапласа) комплексной передаточной функции W(s).

Динамические свойства систем характеризуют реакции на входные воздействия специального вида. В частности анализ выхода системы на единичный скачок и d-функцию (дельта-функцию).

Пусть u(t) = 1(t), то есть на вход системы подается функция Хевисайда (единичный скачок), определяемая:

График функции Хевисайда приведен на рис. 2.1а:

а)

б)

Рис.2.1. Функции Хевисайда (а) и Дирака (б)

Реакция САУ на единичный скачек называется переходной функцией системы и обозначается h(t).

Если u(t) = d(t), то есть на вход системы поступает функция Дирака (d-функция, импульсная функция, рис. 2.1б) определяемая:

то реакция САУ называется импульсной переходной функцией системы и обозначается w(t). Таким образом оригинал комплексной передаточной функции можно измерить как реакцию систему на импульс.

Импульсная и переходная функции системы связаны соотношением:

Благодаря широкому применению при исследовании устойчивости динамических систем и проектировании регуляторов получили распространение частотные характеристики.

Пусть на вход системы с передаточной функцией W(s) подается гармонический сигнал u(t) = au cos(wt), t>0. В этих условиях справедлива следующая теорема:

Если звено является устойчивым, то установившаяся реакция y(t) на гармоническое воздействие является функцией той же частоты с амплитудой ay = au |W(iw)| и относительным сдвигом по фазе y = argW(iw).

Таким образом, выход определяется гармонической функцией

К-во Просмотров: 795
Бесплатно скачать Курсовая работа: Построение математических моделей методом идентификации