Курсовая работа: Построение математических моделей методом идентификации
>> w= TF([1,36,9],[1,15,18,34])
Transfer function:
s^2 + 36 s + 9
------------------------
s^3 + 15 s^2 + 18 s + 34
>>pole(w)
ans =
-13.8796
-0.5602 + 1.4614i
-0.5602 - 1.4614i
>>zero(w)
ans =
-35.7482
-0.2518
>>step(w)
>>impulse(w)
>>bode(w)
>>nyquist(w)
>>ltiview(w)
Рисунок 2.6 – Блок-схема программы исследования характеристик динамической системы
Задание 3. Построение модели с распределенными параметрами
3.1 Постановка задачи
Применение метода конечных разностей для расчета теплового режима твердой стенки
Плоская стенка первоначально прогрета равномерно до температуры 600С. В дальнейшем на внутренней поверхности стенки (х = 0) обеспечивается условие теплоизоляции (плотность теплового потока равна нулю), а с наружной поверхности (х = L) идет теплообмен с внешней средой, имеющей постоянную температуру Тср = -40 0С.. Изменение температуры в стенке осуществляется в результате процесса теплопроводности. Требуется получить зависимость от времени температуры на внутренней поверхности стенки. Толщина стенки L=20смб коэффициент теплоотдачи α=100Вт/м2К (неявная схема).
3.2 Математическая постановка задачи
Для неявной разностной схемы апроксимация уравнения теплопроводности будет иметь следующий вид:
(3.1)
Теперь удобно ввести и в левой и правой части сгруппировать все члены с индексрмj+1:
(3.2)