Курсовая работа: Применение метода ветвей и границ для задач календарного планирования

z* =13,5,Х1 * =(3;0,5;0;1;0;2,5).


Приложение 2

Решение задачи z = 4х1 + х2 +1 ® max при ограничениях:

с помощью табличного процессора MicrosoftExcel.


Приложение 3

В качестве примера применения метода ветвей и границ приведем поиск оптимального значения функции Z = Зх1 + х2 ® max при ограничениях:


4xl + Зх2 < 18,

x1 + 2x2 £ 6,

0 £x1 £ 5,

0 £x2 £ 4,

х1 , x2 — целые числа.

Решение

За нижнюю границу линейной функции примем, например, ее значение в точке (0,0), т.е. Z0 = Z (0; 0) = 0.

I этап. Решая задачу симплекс-методом, получим Zmax = 13,5 при Х1 * = (4,5; 0; 0; 1,5; 0,5; 4); так как первая компонента х1 * дробная, то из области решения исключается полоса, содержащая дробное оптимальное значение х1 * , т.е. 4 < х1 < 5. Поэтому задача 1 разбивается на две задачи 2 и 3.


Задача 2

Z=3x1 +x2 →max

при ограничениях:


4xl + Зх2 < 18

x1 + 2x2 £ 6

0 £x1 £ 4

0 £x2 £ 4

х1 , x2 — целые числа.

Задача 3

Z=3x1 +x2 →max

при ограничениях:


4xl + Зх2 < 18

x1 + 2x2 £ 6

К-во Просмотров: 322
Бесплатно скачать Курсовая работа: Применение метода ветвей и границ для задач календарного планирования