Курсовая работа: Применение методов дискретной математики в экономике

Заданием в данном пункте является построение таблицы истинности для следующего высказывания:

,

Высказыванием называется повествовательное предложение, о котором можно сказать в данный момент, что оно истинно или ложно, но не то и другое одновременно. “Истинность” или “ложность” предложения – это истинностное значение высказывания. Каждому высказыванию сопоставляется переменная, равная 1, если высказывание истинно, и равная 0, если оно ложно. Эти высказывания будут считаться простыми. Из простых высказываний с помощью логических связок могут быть построены составные высказывания. В таблице 1 приведены некоторые логические связки, используемые при задании данной функции (1).

Таблица 1-Логические связки

Название Обозначение
Конъюнкция &
Импликация ®
Сумма по модулю два Å
Штрих Шеффера |
Отрицание Ø
Дизъюнкция Ú
Стрелка Пирса ¯

Правильно построенные составные высказывания называются (пропозиционарными) формулами. Истинностное значение формулы определяется через истинностные значения её составляющих в соответствии с единой таблицей истинности (таблица 2).

Таблица 2-Истиностные значения формул высказывания

Х1 Х2 X1 &X2 X1 ® X2 X1 ÅX2 X1 Ú X2 ØX1 X1 ¯ X2
0 0 0 1 0 0 1 1
0 1 0 1 1 1 1 0
1 0 0 0 1 1 0 0
1 1 1 1 0 1 0 0

Для того чтобы составить таблицу истинности для формулы, необходимо выполнить последовательность всех логических операций.

, (1)

После последовательного выполнения всех логических операций составляется таблица истинности для данной функции


Таблица 3- Таблица истинности функции (1)

1 2 3 4 5 6 7 8 9 10
x y z &
0 0 0 0 1 1 1 0 0 0
0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0
1 0 0 0 1 1 1 0 1 0
1 0 1 1 1 1 1 0 1 0
1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 0 0 1 1 0

Приведение функции к конъюнктивным и дизъюнктивным нормальным формам. Конъюнктивным (дизъюнктивным) одночленом от переменных а1 , а2 , а3 ,…,а n называется конъюнкция (дизъюнкция) этих переменных или их отрицаний. Формула, равносильная данной формуле алгебры высказываний и являющаяся дизъюнкцией элементарных произведений (конъюнктивных одночленов), называется дизъюнктивной нормальной формой (ДНФ) данной формулы. Формула, равносильная данной формуле алгебры высказываний и являющаяся конъюнкцией элементарных произведений (дизъюнктивных одночленов), называется конъюнктивной нормальной формой (КНФ) данной формулы /2/. Справедливы следующие теоремы: любая булева функция, тождественно не равная нулю, представима и притом единственным образом в виде ДНФ по формуле:

V (2)

Любая булева функция, тождественно не равная единице представима и притом единственным образом в виде КНФ.

L (3).

Любая булева функция представима формулой, в которую входит только конъюнкция, дизъюнкция и отрицание /2/.

Искомая ДНФ для функции (1) имеет вид:

Искомая КНФ для функции (1) будет иметь следующий вид:

В расчетах ДНФ и КНФ использована методика /2/.

Построение полинома Жегалкина.

Представление булевой функции над базисом {0,1,v,Å} называется полиномом Жегалкина.

Таким образом, всякая булева функция представима в виде:

где ∑ - сложение по модулю два, знак · обозначает конъюнкцию/7/.

Для функции f ( x , y , z ) (1) полином Жегалкина имеет вид:

P(x, y, z)=b0 ×1Åb1 ×xÅb2 ×yÅb3 ×zÅb4 ×x×yÅb5 ×x×zÅb6 y×zÅb7 x×y×z

Метод неопределенных коэффициентов заключается в том, что путем последовательной подстановки переменных x, y, z и соответственно значений функции при этих переменных, из таблицы 1 в данный полином (4), строится система уравнений:

0=b0 ×1Åb1 ×0Åb2 ×0Åb3 ×0Åb4 ×0×0Åb5 ×0×0Åb6 0×0Åb7 0×0×0

К-во Просмотров: 432
Бесплатно скачать Курсовая работа: Применение методов дискретной математики в экономике