Курсовая работа: Применение порошковой металлургии в промышленности.Свойства и получение порошковых материалов
Порошковая металлургия занимается изготовлением металлических порошков и разнообразных изделий из них. Характерной особенностью порошковой металлургии как промышленного метода изготовления различного рода материалов является применение исходного сырья в виде порошков, которые затем прессуются (формуются) в изделия заданных размеров и подвергаются термической обработке (спеканию), проводимой при температурах ниже температуры плавления основного компонента шихты /1/.
Порошковая технология – это широкая область получения дисперсных тел, применяемых в разнообразных отраслях производства – порошковой металлургии, керамической промышленности, получении пищевых и лекарственных продуктов, удобрений, топлива, строительных материалов и др. /2/. Вследствие некоторого внешнего сходства технологии порошковой металлургии с технологией керамического производства, изделия, изготавливаемые методами порошковой металлургии, широко известны также под названием металлокерамических.
Основными элементами технологии порошковой металлургии являются следующие:
· получение и подготовка порошков исходных материалов, которые могут представлять собой чистые металлы или сплавы, соединения металлов с неметаллами и различные другие химические соединения;
· прессование из подготовленной шихты изделий необходимой формы в специальных пресс-формах, т.е. формование будущего изделия;
· термическая обработка или спекание спрессованных изделий, придающее им окончательные физико-механические и другие
· специальные свойства.
В производственной или исследовательской практике иногда встречаются отклонения от этих типичных элементов технологии, например совмещение операций прессования и спекания, пропитка пористого брикета расплавленными металлами, дополнительная механическая и другая обработка спеченных изделий и пр. Однако основной принцип технологии – применение исходной порошковой шихты и спекание ниже температуры плавления основного элемента, образующего спрессованное тело – остается неизменным /1/.
Метод порошковой металлургии обладает рядом преимуществ:
· возможность изготовления материалов, содержащих наряду с металлическими составляющими и неметаллические, а также материалов и изделий, состоящих из двух (биметаллы) или нескольких слоев различных металлов;
· возможность получения пористых материалов с контролируемой пористостью, чего нельзя достигнуть плавлением и литьем.
Наряду с преимуществами порошковой металлургии следует отметить и недостатки, затрудняющие и ограничивающие широкое ее распространение. К основным недостаткам следует отнести высокую стоимость порошков металлов и отсутствие освоенных методов получения порошков сплавов – сталей, бронз, латуней и пр. Изделия, получаемые из металлических порошков, вследствие пористости обладают повышенной склонностью к окислению, причем окисление может происходить не только с поверхности, но и по всей толщине изделия. Металлокерамические изделия обладают также сравнительно низкими пластическими свойствами (ударная вязкость, удлинение) /3/.
1 Методы изготовления порошковых материалов
Порошковый материал – совокупность частиц металла, сплава или металлоподобного соединения с размерами до 1 мм, находящихся во взаимном контакте и не связанных между собой /4/.
Все сыпучие тела состоят из частиц и межчастичных (внешних) пор. Частицы порошков, в свою очередь, могут подразделяться на более мелкие структурные элементы. Металлические частицы практически всегда содержат примеси, распределенные как по поверхности, так и в виде внутренних включений, и часто имеют внутричастичные поры.
Частицы могут иметь самую разнообразную форму. Можно подразделить различные структуры на три основные группы:
· волокнистые или игольчатые частицы, длина которых значительно превышает их размер по другим измерениям;
· плоские частицы (пластинки, листочки, таблицы), длина и ширина которых во много раз больше толщины;
· равноосные частицы с примерно одинаковыми размерами по всем измерениям.
Частицы отделены одна от другой порами (межчастичными) и контактными промежутками. Поры в непрессованных порошках занимают обычно 70-85% всего объема. Кроме пор межчастичных, порошки могут иметь и внутричастичные поры. Размер межчастичных пор увеличивается с повышением размера частиц и уменьшением плотности их укладки.
Вследствие значительного размера удельной поверхности количество поверхностных примесей на единицу массы (главным образом окислов) у порошков, особенно тонких, значительно больше, чем у компактных тел. В порошках также имеются и внутричастичные примеси – включения загрязнений, окислов и т.п. Возможно также механическое загразнение порошков отдельными частицами примесей /5/.
Производство порошка – первая технологическая операция метода порошковой металлургии. Существующие способы получения порошков весьма разнообразны – это делает возможным придания изделиям из порошка требуемых физических, механических и других свойств. Также метод изготовления порошка определяет его качество и себестоимость. Выделяют два способа получения порошков: физико-химические и механические.
К физико-химическим методам относят технологические процессы производства порошков, связанные с глубокими физико-химическими превращениями исходного сырья. В результате полученный порошок по химическому составу существенно отличается от исходного материала. К физико-химическим методам относятся: электролиз, термическая диссоциация карбонильных соединений, восстановление оксидов твердыми восстановителями и газами, метод испарения и конденсации и др.
Под механическими методами получения порошков понимают технологические процессы, при которых в результате действия внешних механических сил исходный металл измельчается в порошок без изменения его химического состава. Чаще всего используется измельчение твердых материалов в мельницах различных конструкций. К механическим методам относят: измельчение металла резанием, размол в шаровых мельницах, измельчение в вихревых мельницах, дробление в инерционных дробилках, распыление струи жидкого металла паром, водой, сжатым газом.
Более универсальными являются физико-химические методы, но в практике порошковой металлургии четкой границы между двумя методами получения порошка нет. Чаще всего в технологическую схему производства порошка включаются отдельные операции как механических, так и физико-химических методов получения порошка.
Получение металлических порошков путем восстановления из оксидов является наиболее распространенным, высокопроизводительным и экономичным методом /6/.
Восстановление – процесс получения металла, материала, вещества или их соединений путем отнятия неметаллической составляющей (кислорода или солевого остатка) из исходного химического соединения /4/.
Порошки, получаемые восстановлением, имеют низкую стоимость, а в качестве исходных материалов при их получении используются рудные концентраты, оксиды, отходы металлургического производства. Эта особенность метода восстановления обусловила его широкое практическое применение. В настоящее время этим методом получают порошки многих металлов /6/.
В общем случае химическую реакцию восстановления можно представить:
MeX + B ↔ Me + BnXm ± Q,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--