Курсовая работа: Применение уравнение Лагранжа II рода к исследованию движения механической системы с двумя степенями свободы
Подставляя найденные значения обеих сумм в равенство (7) и рассматриваем механическую систему со стационарными идеальными связями, для которых :
+,
или
=(j = 1,2,…, s). (10)
Систему s дифференциальных уравнений (10) называют уравнениями Лагранжа второго рода. Эти уравнения представляют собой дифференциальные уравнения второго порядка относительно обобщенных координат системы .Интегрируя эти дифференциальные уравнения и определяя по начальным условиям постоянные интегрирования, получаем s уравнений движения механической системы в обобщенных координатах:
(j=1, 2,…, s).
6 Уравнения второго рода для консервативной системы
Предположим, что на рассматриваемую механическую систему наряду с силами, имеющими потенциал (консервативными силами), действуют силы, не имеющие потенциала (неконсервативные силы). При этом условии обобщенную силу удобно представить в виде суммы обобщенной силы , соответствующей консервативным силам , и обобщенной силы , соответствующей неконсервативным силам :
=+.
Если на рассматриваемую систему действуют только консервативные силы, то обобщенная сила определяется формулой:
= = (j=1,2,…, s).
В этом случае уравнения Лагранжа второго рода принимают следующий вид:
= (j = 1,2,…, s). (11)
Уравнения (12) можно преобразовать путем введения функции Лагранжа L = Т – П, называемой кинетическим потенциалом.
П = П (t).
Следовательно, кинетический потенциал L является функцией обобщенных координат, обобщенных скоростей и времени:
Потенциальная энергия является функцией только обобщенных координат и времени, а потому
(j=1,2,…, s).
Пользуясь этим условием, получим
,
Подставим эти частные производные в уравнения Лагранжа (11):
или
(j=1,2,…, s). (12)
Уравнения (12) называются уравнениями Лагранжа второго рода для консервативной системы.
7 Применение уравнений Лагранжа II рода к исследованию движения механической системы