Курсовая работа: Принятие решений в условиях неопределённости
«Лотереей называется пара (У, Р), где У = (уг y2 ,...,yn) — множество возможных значений результата у, Р — (pv р2 ,...,рn ) — вероятностное распределение на результатах. В общем случае можно рассматривать лотереи с непрерывными значениями результата, а также лотереи с векторными результатами и составные лотереи (где результатом одной лотереи является другая лотерея).[4] »
Психологические особенности человека таковы, что ему очень трудно сравнивать лотереи с большим числом выигрышей. ЛПР гораздо проще иметь дело лишь с двумя исходами и при этом отвечать на вопросы типа: "За сколько Вы согласны отступиться от участия влотерее?" или "Во сколько Вы оцениваете лотерею, если Вам предложат ее продать?" При соизмерении произвольного результата у с наилучшим у+ и наихудшим у-, результатами используется следующее допущение, которое называется правилом замены.
Это правило гласит следующее. Если в исходной лотерее (У, Р) любой из результатов у заменить на эквивалентный ему по предпочтительности, то для ЛПР будет безразлично, в какой из лотерей — исходной или новой — участвовать.
Результат у в этом случае заменяют на лотерею вида у+ с вероятностью р(у) и у- с вероятностью 1 - р(у). Такая лотерея называется базовой.Вероятность р(у) в базовой лотерее должна выбираться такой, чтобы базовая лотерея была эквивалентна по предпочтительности вырожденной лотерее, приводящей достоверно к результату у.
Достоверным эквивалентом лотереи (У, Р) называется величина yd такая, что ЛПР безразлично, получить ли результат уй наверняка или участвовать в лотерее (У, Р). Именно по величине детерминированного эквивалента судят о типе отношения ЛПР к стохастическому риску. И если оказывается, что детерминированный эквивалент yd лотереи меньше математического ожидания М результатов лотереи, то ЛПР не склонно к риску, если уй > М — склонно к риску, а если они равны — ЛПР безразлично к риску/
И еще одно важное замечание. Поскольку детерминированный эквивалент — неслучайная величина, это позволяет легко свести задачу обоснования решений в условиях стохастического риска к задаче принятия решений в условиях определенности. Надо только все случайные исходы заменить их детерминированными эквивалентами. После этого формальный анализ проводят как бы в условиях определенности
Заключение
Неопределенности являются основной причиной появления рисков. Уменьшение их объема является основной задачей руководителя. Неопределенность рассматривают как явление и как процесс. Если мы рассматриваем ее как явление, то имеем дело с набором нечетких ситуаций, неполной и взаимоисключающей информацией. К явлениям относятся и непредвиденные события, возникающие помимо воли руководителя и способные изменить ход запланированных мероприятий: например, резкая смена погоды привела к изменению программы празднования дня города.
Неопределенность в процессе разработки управленческого решения может быть вызвана следующими причинами: отсутствием достоверной информации; сложностью при обработке информации; монополизацией необходимых данных внешними органами управления.
Уровень неопределенности в значительной мере зависит от характеристик информации. Поэтому руководителям необходимо использовать документальную информацию: справочники, сертификаты, свидетельства.
Задача ЛПР заключается в поиске необходимой информации, оценке ее характеристик, выделении важной части, позволяющей анализировать текущее состояние системы, в которой разрабатывается решение.
Чтобы уменьшить негативные последствия делегирования решения большому количеству исполнителей, используют нормы управляемости, разработанные применительно к функциям управления.
Простые решения подготавливаются по известным алгоритмам и исполняются по отработанным схемам, в которых отсутствуют неопределенность или ее уровень настолько низок, что не оказывает существенного влияния на результат.
Решения средней сложности предполагают альтернативные варианты разработки и многообразие путей их реализации. Основанием для выбора такого решения является сокращение влияния неопределенности.
Трудные решения не имеют аналогов, а влияние неопределенности на процесс разработки и реализации решения учесть практически невозможно.
Рассмотрение уровней неопределенности позволяет аналитически представить их использование в зависимости от характера управленческой деятельности руководителя. К эффективным решениям относят обоснованные, проработанные, выполнимые, понятные исполнителю. К неэффективным — необоснованные, недоработанные, невыполнимые и трудно принимаемые к исполнению.
Часто ошибочно полагают, что использование каких-то отдельных характеристик распределения вероятностей результата очень просто устраняет трудность выбора наилучшего решения. Например, чаще всего используют математическое ожидание результата; иногда — дисперсию. Однако, как показывает практика, выбор на основе таких характеристик не всегда согласуется с личными представлениями ЛПР о наилучшей альтернативе. В частности, это объясняется также и тем, что, описывая задачи с риском, ЛПР редко использует такие теоретические понятия, как "распределение вероятностей", "случайная величина", "квантиль" и т.п. Вместо них человек обычно оперирует такими малоформализуемыми понятиями, как "шансы на выигрыш", "возможность неудачи", "тяжесть последствий" и др. Он их воспринимает как более привычные, а потому —, и более надежные. Хотелось бы, чтобы правила выбора также использовали подобные простые и понятные ЛПР суждения; чтобы на основе таких суждений можно было отыскивать сначала эффективные, а при необходимости — и наилучшие альтернативы.
В этой связи хорошо согласуется с данными практики следующая вербальная формулировка принципа стохастического доминирования:тот вариант решения лучше, для которого выше вероятность получения более предпочтительного результата.
Список литературы
1) Весенин В.Р. Менеджмент. – М.: Проспект, 2007. - 512 с.
2) Воробьев С. Н., Уткин В. Б., Балдин К. В. Управленческие решения М.: ЮНИТИ-ДАНА, 2005. – 496 с.
3) Глухов В.В. Менеджмент. – СПб.: Питер, 2007. – 608 с.
4) Саак А.Э., Тюшняков В.Н. Разработка управленческого решения. – СПб.: Питер, 2007. – 272 с.
5) Смирнов Э.А. Разработка управленческих решений - M.: ЮНИТИ-ДАНА, 2002. – 271 с.
[1] Смирнов Э. А. Разработка управленческих решений: Учебник для вузов. - М.: ЮНИ-ТИ-ДАНА, 2002. – 176 с.
[2] Саак А.Э., Тюшняков В.Н. Разработка управленческого решения. – СПб.: Питер, 2007. - 128 С.
[3] Воробьев С. Н., Уткин В. Б., Балдин К. В. Управленческие решения М.: ЮНИТИ-ДАНА, 2005. - 220 с.
[4] Воробьев С. Н., Уткин В. Б., Балдин К. В. Управленческие решения М.: ЮНИТИ-ДАНА, 2005. - 232 с.