Курсовая работа: Проектирование и расчеты одноэтажного промышленного здания
Расчет рамы может выполняться одним из методов строительной механики, причем для сложных рам общего вида – с помощью ЭВМ.
Между тем, в большинстве одноэтажных промышленных зданий ригели располагаются на одном уровне, а их изгибная жесткость в своей плоскости значительно превосходит жесткость колонн и поэтому может быть принята равной EJ=Ґ. В этом случае наиболее просто расчет рам производится методом перемещений. Основную систему получим введением связи, препятствующей горизонтальному смещению верха колонн (рис.7.а.).
Определение усилий в стойках рамы производим в следующем порядке:
– по заданным в п.1.2. размерам сечений колонн определяем их жесткость как для бетонных сечений в предположении упругой работы материала;
– верхним концам колонн даем смещения и по формуле приложения 20 находим реакцию каждой колонны и рамы в целом
где n – число колонн поперечной рамы;
– по формулам приложения 20 определяем реакции верхних опор стоек рамы в основной системе метода перемещений и суммарную реакцию в уровне верха колонн для каждого вида нагружения;
–для каждого из нагружений (постоянная, снеговая, ветровая, комплекс крановых нагрузок) составляем каноническое уравнение метода перемещений, выражающее равенство нулю усилий во введенной (фиктивной) связи
, (2.1)
и находим значение ; здесь – коэффициент, учитывающий пространственную работу каркаса здания.
При действии на температурный блок постоянной, снеговой и ветровой нагрузок все рамы одинаково вовлекаются в работу, пространственный характер деформирования не проявляется и поэтому принимают . Крановая же нагрузка приложена лишь к нескольким рамам блока, но благодаря жесткому диску покрытия в работу включаются все остальные рамы. Именно в этом и проявляется пространственная работа блока рам. Величина для случая действия на раму крановой (локально приложенной) нагрузки может быть найдена по приближенной формуле:
, (2.2)
где:
– общее число поперечников в температурном блоке;
– расстояние от оси симметрии блока до каждого из поперечников, a– то же для второй от торца блока поперечной рамы (наиболее нагруженной);
– коэффициент, учитывающий податливость соединений плит покрытия; для сборных покрытий может быть принят равным 0,7;
=1, если в пролете имеется только 1 кран, в противном случае =0,7;
– для каждой стойки при данном нагружении вычисляем упругую реакцию в уровне верха:
(2.3)
– определяем изгибающие моменты M, продольную N и поперечную Q силы в каждой колонне как в консольной стойке от действия упругой реакции и внешних нагрузок.
Для подбора сечений колонн определяем наибольшие возможные усилия в четырех сечениях: I-I – сечение у верха колонны; II-II – сечение непосредственно выше подкрановой консоли; III-III – то же – ниже подкрановой консоли; IV-IV – сечение в заделке колонны.
2.1 Геометрические характеристики колонн
Размеры сечений двухветвевых колонн приведены на рис. 2.
Для крайней колонны:
количество панелей подкрановой части , расчетная высота колонны НК =15,75 м, в том числе подкрановой части НН =11,8 м, надкрановой части НВ =3,95 м, расстояние между осями ветвей с=0,95 м.
Момент инерции надкрановой части колонны
;
Момент инерции одной ветви
;