Курсовая работа: Проектирование кинематической схемы структурный кинематический и силовой анализ рычажного механизма
В данной формуле модули векторов равны:
ε – угловое ускорение.
Вектор направлен вдоль ОА, а вектор
- перпендикулярно ОА. При этом
направлен к центру, а
по направлению ω1=ω (против часовой стрелки по условию задания)
При ω1=ω=const угловое ускорение ε1=0, и следовательно , отсюда следует что
=
=12,6·12,6·0,115=18,2м/сек2
=R=0,115 м – из кинематической схемы
ω1=12,6 сек-1 – определено расчетами выше
Далее определяем ускорение двухповодковой группы ВО1С
Ускорение точки В находится из правила подобия:
«отрезки прямых линий, соединяющих точки на кинематической схеме и отрезки прямых соединяющих концы векторов полных ускорений этих точек на плане ускорений образуют подобные и соответственно расположенные фигуры». Это правило выполнено на плане ускорений.
Далее определяем ускорение точки D, принадлежащей ползуну.
Ускорение
В данной формуле:
- известно направление (горизонтально по направлению скорости
)
- известно направление и модуль из выше приведенных расчетов
- известно направление (параллельно шатуну CD)
=0 т.к. ползун движется поступательно и не имеет углового ускорения
Уравнение решается графически. На основании расчетов и сделанных выводов строим план ускорений, для чего на свободном месте чертежа определяем точку р полюс и принимаем масштаб построения =0,1
Из полюса р проводим отрезок ра=18,2/0,1=182 мм ускорение точки А, направленное по кривошипу к центру. Получаем точку а. из точки а проводим линию через полюс р и по правилу подобия получаем точку b
Из точки проводим луч параллельный BзадDзад а из полюса р - горизонтальный луч. Точка пересечения этих лучей даст т. D, которая в масштабе ускорений и определяет ускорение ползуна D, т.е. aD =р d
.
Примечание:
В связи с тем что для первоначального построения плана ускорений применялись величины различающиеся значительно по модулю, план ускорений представлен условно и показывает порядок построения, но не отражает истинных величин.
6. Проводим статический расчет механизма в заданном положении.
Статический расчет механизма состоит в определении усилий действующих на отдельные звенья механизма.
Исследование механизма начинается с последней присоединенной группы и заканчивается при последовательном переходе от одной группы к другой, анализом входного звена. Уравновешивающий момент – это величина пары сил которые надо приложить к входному звену – кривошипу для уравновешивания всех сил, действующих на звенья механизма при вращении кривошипа. Принимаем условие, что вал кривошипа приводится во вращение парой сил, а сам кривошип принимается за начальное звено.
Уравновешивающую силу направляем по касательной к кривошипу в заданном положении механизма, т.е. уравновешивающая сила будет перпендикулярна кривошипу ОАзад.
По формуле