Курсовая работа: Проектирование оптимальных структур активных RC-фильтров
– обозначает номер интервала дискретизации.
Как видно из приведенного анализа, задача синтеза аналоговой части нестационарной системы сводится к построению такой ARC-схемы, которая бы обеспечила на каждом -м шаге максимальное приближение к идеализированной замороженной передаточной функции (6). Следовательно, проектирование аналоговой части устройства возможно выполнить в рамках известных методов синтеза стационарных ARC-цепей, включая и частотные методы, рассмотренные ранее.
2. Обобщенный алгоритм решения задачи синтеза структур нестационарных ARC-схем
Полученный результат показывает, что задача синтеза структур нестационарных устройств сводится к аналогичной стационарной задаче в точке «наихудшего случая», когда совокупность управляющих параметров из множества допустимых параметрических воздействий приводит к максимальному отклонению частотных характеристик от желаемых. Таким образом, согласно предложенной в настоящей работе методологии синтеза структур рассматриваемую задачу можно разделить на три относительно самостоятельных этапа.
Первый этап заключается в синтезе исходной принципиальной схемы, получении набора локальных передаточных функций, определяющих функции активной составляющей чувствительности, и принятии решения о направлении проектных процедур. Настоящий этап состоит из ряда составляющих. Прежде всего, по модели нестационарного устройства синтезируется стартовая конфигурация принципиальной схемы. По стартовой конфигурации путем коммутации базисных структур строится принципиальная схема аналоговой части проектируемого устройства, воспроизводящая заданный набор «замороженных» передаточных функций. Выбор числа разрядов умножающих ЦАП, входящих в состав управляемых усилителей и интеграторов, может осуществляться по следующей оценочной формуле:
,
где d1 и d2 – верхняя и нижняя границы диапазона измеряемой величины; D – шаг квантования по уровню, который выбирается из соображений точности реализации требуемых коэффициентов.
Для определения набора локальных передаточных функций Fsi (p), Fkj (p), Hi (p), Hj (p), Fii (p), Fjj (p) по синтезированной схеме достаточно вычислить обратную матрицу. Получение последней в символьном виде позволяет не только повысить наглядность представляемой информации, но и обеспечивает на последнем этапе синтеза согласованных с Fii (p), Fjj (p), Hi (p), Hj (p) законов изменения дополнительных компенсирующих цепей обратных связей. На этом же этапе становится возможным вычисление коэффициентов , определяющих верхний уровень динамического диапазона во всех стационарных точках x. Этап завершается определением функций чувствительности к площади усиления всех активных элементов.
На втором этапе синтеза, с целью выбора предпочтительного варианта реализации компенсирующих контуров обратных связей, необходимо определить доминирующие активные элементы, параметры которых наибольшим образом оказывают влияние на достижимый частотный и динамический диапазон схемы. Для ранжирования степеней влияния каждого ОУ наиболее целесообразно, с точки зрения рассматриваемой концепции синтеза, произвести исследование наборов модулей функций чувствительности с целью определения их максимума. Для этого прежде всего необходимо определить область изменения параметров схемы, соответствующую «наихудшему случаю», когда отклонение реализуемых функций амплитудно-частотных характеристик (АЧХ) и фазочастотных характеристик (ФЧХ) от идеальных в полосе рабочих частот схемы окажется максимальным:
, (8)
(9)
где – максимальная граничная частота работы схемы.
Значение оценки верхней границы частотного диапазона схемы для можно определить по формуле
, (10)
где – свободный член полинома знаменателя идеализированной замороженной передаточной функции W0 .
Отметим, что важно не только определить значение экстремума функций (8) и (9), но и найти координаты указанных глобальных экстремумов. На эти экстремальные задачи накладывается система ограничений в виде неравенств, следующая из максимально и минимально возможного коэффициента передачи ЦАП, масштабных усилителей, значения постоянной времени интеграторов и рабочего диапазона частот нестационарной схемы
(11)
В частном случае из (11) могут быть исключены ограничения, соответствующие неизменяемым параметрам коэффициентов передачи масштабных усилителей или постоянным времени интеграторов.
Таким образом, в результате решения экстремальных задач (8) и (9) с ограничениями (11) становится возможным определение следующего вектора оптимальных координат:
, (12)
соответствующего наихудшему случаю.
С учетом результатов (12) для ранжирования ОУ по степени их влияния находится решение следующей экстремальной задачи с соответствующей системой ограничений:
, (13)
(14)
где – относительный доверительный интервал решения экстремальной задачи.
Указанный доверительный интервал необходим вследствие того, что максимумы модулей функций чувствительности в общем случае не совпадают с определенной оптимальной точкой (12), а лишь находятся в ее окрестности [9].
Выражение (14) является интегральной оценкой, позволяющей произвести качественный анализ влияния площади усиления i-го ОУ на частотные свойства передаточных функций. Успешное решение экстремальных задач (8), (9) и (13) во многом зависит от специфики работы нестационарного устройства, диапазона изменения управляющих параметров и требований, предъявляемых к точности реализации.
Для визуальной оценки степени влияния параметров каждого ОУ по результатам проведенных исследований (13) строится набор диаграмм по каждому из выходов, из которых можно определить доминирующий активный элемент
(15)