Курсовая работа: Проектирование системы оптимального корректирующего устройства
Рис. 1.17. АФЧХ разомкнутой системы
Так как годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывает особую точку (−1;j0), то замкнутая система устойчива.
Из рис. 1.17 видно, что годограф скорректированной системы наиболее удален от особой точки (−1;j0), следовательно, имеет наибольшие запасы устойчивости в отличие от системы с пропорциональным регулятором.
Построим годограф Михайлова замкнутой системы (см. п.1.2.2).
Годограф Михайлова изображен на рис. 1.18 по характерным точкам (табл. 1.9):
Таблица 1.9
ω |
|
|
0 |
87,336 |
0 |
20,037 |
0 |
190,39 |
64,71 |
-687,1 |
0 |
158,94 |
0 |
-7673 |
534,97 |
|
0 |
Так как годограф системы, имеющей пятый порядок, при изменении ω от 0 до ∞, начинается на вещественной положительной полуоси и при увеличении ω в положительном направлении последовательно проходит пять квадрантов, и при этом не обращается в 0, то можно сделать вывод, что система устойчива.
Рис. 1.18. Годограф Михайлова (справа увеличен в начале координат)
1.4.2 Определение частотных ПК, запасов устойчивости, критического коэффициента усиления