Курсовая работа: Проектування та аналіз роботи вузла редуктора
6.1 Призначення та вибір посадок для підшипників кочення
Підшипники кочення - найбільш поширені стандартні вироби, без яких неможлива робота практично жодної машини. Якість підшипників, довговічність і надійність їх роботи залежить від точності приєднувальних розмірів - зовнішнього діаметру D1 зовнішнього кільця і внутрішнього діаметру d внутрішнього кільця, а також від точності тіл кочення, складання, радіального і торцевого биття. Відхилення приєднувальних розмірів D і d кілець підшипників наведені в [2, с.806; табл. 4.70...4.75], /дод.7/. Вибір посадок кілець підшипників кочення визначається характером їх навантаження. При цьому розрізняють такі види навантаження кілець: місцеве, циркуляційне і коливальне
Місцеве навантаження характеризується постійним по величині і напрямку радіальним навантаженням, що передається нерухомому кільцю. Отже, під навантаженням знаходиться обмежена ділянка поверхні кільця.
При циркуляційному навантаженні постійне по величині і напрямку навантаження передається обертаючому кільцю або обертаюче навантаження сприймається нерухомим кільцем. В цьому випадку послідовно буде
Рn Рв Рp - відповідно постійне по напрямку, обертаюче і рівнодіюче навантаження. Поля допусків для встановлення підшипника на вал і в корпус наведені в [1, с.816, табл.4.78, 4.79] ;
При циркуляційному навантаженні посадки на вал і в корпус вибираються по інтенсивності радіального навантаження РR для посадочної поверхні розраховується із співвідношення:
де R - радіальна реакція опори (Н); b = B - 2∙r - робоча ширина посадочного місця; В - робоча ширина підшипника (м); r - радіуси скруглення (м); Kn - динамічний коефіцієнт, який залежить від характеру навантаження (при помірних поштовхах Kn = 1 при навантаженні до 300% Kn = 1,8); F - коефіцієнт ослаблювання порожнистого вала або тонкостінного корпусу; FA - коефіцієнт нерівномірності розподілу радіального навантаження міх рядами роликів в дворядних конічних підшипниках або між здвоєними шарикопідшипниками при наявності осьового навантаження [1, с.817, табл.4.80, 4.81]. В прикладах, які розглядаються в даних методичних вказівках, коефіцієнти F = FA = 1.
Поля допусків вибирають по значенню допустимої інтенсивності PR [1, c.810, табл.4.82] ;
Рекомендації по вибору полів допусків при установленні підшипників на вал, або в корпус з урахуванням характеру навантаження, крім циркуляційного, режиму роботи і типу підшипника наведені в [1, с.821. табл. 4.84], [дод. 9].
6.2 Розрахунок посадок підшипників кочення
Формулювання задачі:
Вибрати посадку циркуляційно навантаженого кільця радіального однорядного підшипника 32 №211 класу точності 6.
(d = 55 мм; D = 100 мм; В = 21 мм; r = 2,5 мм) /дод. 10/ на обертаючий суцільний вал, розрахункова радіальна реакція опори R = 14800 Н. Навантаження є спокійним.
Рішення:
Розраховуємо інтенсивність навантаження:
= 14800 / ( ( 21-2∙2,5 ) ∙10-3 ) ∙1∙1 ∙1 = 925 ∙103 Н/м
Такій інтенсивності навантаження по таблиці /дод.8/ для зовнішнього кільця підшипника відповідає поле допуску M7 .
Для внутрішнього кільця підшипника, яке має місцеве навантаження по таблиці /дод.9/ відповідає поле допуску валу k6.
Схеми полів допусків посадок для внутрішнього та зовнішнього кілець див. Додаток Г
7. Розрахунок та вибір посадок для різьбових з’єднань
7.1 Призначення допусків та посадок для різьбових з’єднань
Вибір вимог до точності виготовлення різьбових з'єднань залежить від класу точності: точний, середній і грубий. Вимоги до точності роз'ємних нерухомих з'єднань випливають із умов згвинчування болта і гайки, і міцності.
Різьбова поверхня утворюється при гвинтовому переміщенні плоского контуру певної форми по циліндричній або конічній поверхні.
Різьбові з’єднання застосовуються для кріплень, переміщень, перетворення руху обертального в поступальний і навпаки, герметизації. Різьбові з’єднання застосовуються у машинах, приладах, інструментах. Понад 60 деталей у машинах мають різьбу.
Всі різьби можна класифікувати по призначенню, профілю витків, числу заходів, направленню обертання контуру.
Різьба метрична для діаметрів 1-600 мм поділяється на різьбу з великим кроком і діаметром 1-68 мм і різьбу з малим кроком діаметром 1-600 мм. Метрична різьба використовується в основному в якості кріпильної для різьбових з'єднань. Це пояснюється тим, що порівняно з іншими різьбами мають найбільш високий приведений коефіцієнт тертя.
Пониження ККД різьб з малим кроком являється наслідком збільшення роботи сил тертя, тому порівняно з різьбою з великим кроком, різьби з малим кроком більш надійні від самовідгвинчування метрична різьба з малим кроком рекомендується для різьбових з'єднань при малій довжині згвинчування, при тонкостінних деталях, сконструйованих регулювальних і подібних пристроїв. В випадку використання метричної різьби з малим кроком навіть не велике зусилля достатньо для того, щоб гвинти самовільно не відгвинчувались під дією зовнішніх сил.
7.2 Визначення номінальних та граничних розмірів різьбового з’єднання