Курсовая работа: Пространства Соболева

Скалярное произведение и норма задаются в теми же формулами, что и в в которых теперь производные обобщённые, а интегрирование понимается в смысле Лебега. Введем в рассмотрение пространство Это пространство является пополнением в норме


(1.10)

линейного пространства функций, непрерывно дифференцируемых на и таких, что является гильбертовым пространством со скалярным произведением

Лемма 3. Если а то

Доказательство. Достаточно доказать первую из этих формул. Она справедлива, если а Пусть – фундаментальная в последовательность, предел которой – элемент Переходя в тождестве к пределу при получим для любой Действительно, из сходимости в следует, что


то есть непрерывность скалярного произведения.

Пусть теперь – фундаментальная последовательность в Перейдём к пределу в тождестве и получим исходное тождество.

Следствие. содержится строго внутри

Действительно, функция Но иначе мы имели бы то есть для любой Возьмём и получим противоречие.

Теорема 2 (Фридрихс). Существует постоянная такая, что для любых

Доказательство. По самому определению всякий элемент из принадлежит Пусть и сходится в к

Построим куб содержащий область Функции доопределим нулём в Частная производная существует всюду в за исключением, быть может, тех точек, в которых прямая, параллельная оси абсцисс, пересекает границу области Для любой точки имеем


По неравенству Коши-Буняковского

Интегрируя полученное неравенство по находим

Так как вне то

Переходя к пределу при приходим к доказываемому неравенству Фридрихса.

Следствие 1. Пространство вложено в

Это предложение непосредственно вытекает из определения вложения банаховых пространств и неравенства Фридрихса.

Следствие 2. В нормы (1.9) и (1.10) эквивалентны.

Действительно, используя неравенство Фридрихса, имеем

2. Применение пространств Соболева в математической физике

2.1 Доказательство существования и единственности обобщённого решения уравнения Лапласа

К-во Просмотров: 248
Бесплатно скачать Курсовая работа: Пространства Соболева