Курсовая работа: Процесс анализа информационных массивов

априорный анализ статистический совокупность распределение

Для оценки однородности совокупности используют различные методы, такие как: группировка, расчет показателей вариации (дисперсия, коэффициент вариации), анализ аномальных наблюдений на основе l- и q-статистик.

На основе группировки и ее графического изображения (рис.1.1 – рис.1.9) можно предположить, что ряды распределения по трем признакам не являются однородными. Но вместе с тем, следует иметь виду, что при незначительном объеме выборки (n < 50) слишком углубленный анализ гистограммы может привести к неверным выводам, поскольку слабо выраженные «горбики и ямы» частот могут быть обусловлены не основными факторами, определяющими распределение единиц по группам, а просто случайными отклонениями вариантов от .

После анализа аномальных наблюдений на основе l- статистики, выявляется аномальность значений, соответствующих 13 предприятию, а также аномальность показателей выручки и расходов 9 предприятия.

В данной работе последующий анализ будет проводится с учетом аномальности, вызванной объективно существующими причинами.

Причины появления в совокупности аномальных наблюдений могут быть:

1) внешние, возникающие в результате технических ошибок;

2) внутренние, объективно существующие.

Для дальнейшего анализа формы распределения используют показатели вариации. Показатели вариации делятся на абсолютные и относительные. К абсолютным относятся размах колебаний, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение и квартильное отклонение. Коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации и относительный показатель квартильной вариации – относительные показатели.

В данной курсовой работе для характеристики однородности совокупности рассчитывались такие показатели, как дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Дисперсия – это средний квадрат отклонений индивидуальных значений признака от средней величины. Дисперсия не только является основной мерой колеблемости признака, но также используется для построения показателей тесноты корреляционной связи, при оценке результатов выборочных наблюдений и т.д.

Для сгруппированных данных она вычисляется по формуле (1.3):

,

(1.3)

где xi – i-ый вариант осредняемого признака;

– выборочная средняя величина или средняя агрегатная;

ni – частота, то есть число, показывающее сколько раз встречаются варианты из данного интервала, или вес i-го варианта;

n– число объектов совокупности.

Для оценки влияния различных факторов, обуславливающих вариацию признака, рассчитывается дисперсия по каждому из показателей. Для этого строятся расчетные таблицы:

Таблица 1.5

Расчетная таблица для вычисления дисперсии по величине выручки от продажи товаров, продукции, работ, услуг

Группы предприятийпо выручке от продажи, тыс. руб. Число предприятий ni Середина интервала xi xi ni xi - (xi - )2 ni
21903 – 121903 7 71903 503321 -105263 29462326870
121903 – 221903 6 171903 1031418 -5263,2 126204986,1
221903 – 321903 4 271903 1087612 94736,8 9600277008
321903 – 421903 2 371903 743806 194736,8 26844875346
Итого 19 3366157 66033684211

Средняя выборочная вычисляется по формуле (1.4):

= (1.4)

Отсюда = 177166,1.

По таблице 1.5 видно, что значения признака отклоняются от средней выборочной в основном в отрицательную сторону.

С помощью формулы (1.3) находится дисперсия, σ2 = 3422825485.

Таблица 1.6

Расчетная таблица для вычисления дисперсии по величине себестоимости проданных товаров, продукции, работ, услуг

Группы предприятий по себестоимости проданных товаров, продукции, работ, услуг, тыс. руб. Число предприятий ni Середина интервала xi xi ni xi - (xi - )2 ni
8109 – 108109 10 58109 581090 -78947,4 16526869806
108109 – 208109 4 158109 632436 21052,6 1472853186
208109 – 308109 4 258109 1032436 121052,6 12354958449
308109 – 408109 1 358109 358109 221052,6 9471265928
Итого 19 2604071 39825947368

= 137056,4

σ2 = 2096102493

Значения себестоимости в основном не превышают среднюю выборочную.

Таблица 1.7

Расчетная таблица для вычисления дисперсии по величине коммерческих и управленческих расходов

Группы предприятий по величине коммерческих и управленческих расходов, тыс. руб. Число предприятий ni Середина интервала xi xi ni xi - (xi - )2 ni
11042 – 26042 6 18542 111252 -22894,7 13437138350
26042 – 41042 4 33542 134168 -7894,7 134307479,2
41042 – 56042 4 48542 194168 7105,26 81939058,2
56042 – 71042 3 63542 190626 22105,26 865927977,8
71042 – 86042 2 78542 157084 37105,26 1053601108
Итого 19 787298 3479489474

= 41436,7

σ2 = 183131024,9

По таблице видно, что значения признака отклоняются от средней выборочной также в основном в отрицательную сторону.

Наиболее часто применяемый показатель относительной колеблемости – коэффициент вариации (формула (1.5)):

(1.5)

Для того чтобы рассчитать коэффициент вариации для группы предприятий по величине выручки от продажи товаров, продукции, работ, услуг нужно рассчитать среднее квадратическое отклонение σ по формуле (1.6):

(1.6)

К-во Просмотров: 332
Бесплатно скачать Курсовая работа: Процесс анализа информационных массивов