Курсовая работа: Проведение статистического анализа и прогнозирование результатов выпуска изданий Беларуси и России

Вероятность любого события определяется как соотношение благоприятных исходов (а ) к общему числу исходов (n ), т. е.

(1.1)

Вероятность любого события изменяется от 0 до 1, если в долях, и от 0 до 100, если в процентах.

Если , то вероятность события приближается к 0 ().

Если , то событие называют достоверным.

Если , то событие называют невозможным.

Два события называют независимыми, если появление одного из них не зависит от появления другого.

Случайные величины могут быть дискретными и непрерывными. Для дискретных случайных величин различия между вариантами случайных величин выражаются целыми числами. Совокупность возможных значений случайной величины и вероятность того, что она примет определенное значение образуют закон распределения случайной величины.

Распределение дискретных случайных величин показывается в виде таблицы, в которой каждому значению случайной величины соответствует ее вероятность. Для непрерывной случайной величины составление ряда распределения заключается в том, что диапазон всех значений случайной величины разбивается на некоторое количество интервалов. Для каждого интервала измеряется количество попаданий в этот интервал. На основании этого рассчитывается вероятность попадания по каждому интервалу. Результат выводится в виде гистограммы.

Наиболее общую характеристику распределения дискретной или непрерывной величины дает интегральный закон распределения. Он устанавливает вероятность того, что случайная величина (х ) остается меньше некоторой количественной переменной (А ), т. е.

, (1.2)

где — интегральная функция распределения.

При изменении случайной величины (х ) от минимального значения до максимального, интегральная функция распределения изменяется в диапазоне от 0 до 1.


1.2. Числовые характеристики распределения случайной величины

Количество попаданий случайной величины в определенный интервал характеризуется плотностью распределения случайной величины. Одной из основных характеристик является математическое ожидание.

Для дискретной случайной величины математическое ожидание определяется как сумма произведений всех возможных значений случайной величины на вероятность этих значений.

(1.3)

Для непрерывной случайной величины математическое ожидание равно:

(1.4)

Таким образом, математическое ожидание выступает как средневзвешенное значение случайной величины и характеризует положение центра распределения на оси абсцисс.

На практике математическое ожидание для непрерывной случайной величины рассчитывается по формуле:

(1.5)

Для дискретной случайной величины по формуле:

(1.6)

Кроме математического ожидания для характеристики положения центра распределения случайной величины часто используют моду и медиану.

Мода — это значение случайной величины, которому соответствует наибольшая плотность вероятности ее распределения.

Медиана — это значение случайной величины для которого интегральная функция распределения .

Для расчета значения моды и медианы необходимо сначала определить модальный и медиальный интервалы.

Модальный интервал — это интервал, характеризующийся наибольшим количеством попаданий случайной величины.

, (1.7)

где — нижняя граница модального интервала;

с — величина интервала;

— разность числа попаданий случайной величины в модальном интервале и предыдущем;

— разность числа попаданий случайной величины в модальном интервале и последующем.

, (1.8)

где — нижняя граница медиального интервала;

с — величина интервала;

К-во Просмотров: 232
Бесплатно скачать Курсовая работа: Проведение статистического анализа и прогнозирование результатов выпуска изданий Беларуси и России