Курсовая работа: Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона

R-это число из необъединенных интервалов

i- число неизвестных параметров

В рассматриваемом эмпирическом распределении не имеются частоты, меньшие 5. Случайная величина ч2 (мера расхождения) независимо от вида закона распределения генеральной совокупности при (n ≥ 50) имеет распределение ч2 с числом степеней свободы

1) К =

уровень значимости б =1–=0,05

,

найдем по таблице значений критическое значение для б = 0,05 и =9

Имеем =16.9. Так как то предполагаемая гипотеза о показательном законе распределения генеральной совокупности не противоречит опытным данным и принимается на уровне значимости б.

2)=,

=

3) M(x)= ,

M(x)=

4) D(x)=

D(x.1)=

5) Таким образом, критическая область для гипотезы задается неравенством ; P()= Это означает, что нулевую гипотезу можно считать правдоподобной и гипотеза Но принимается

Вывод: В ходе расчетно-графической работы мы установили, что генеральная совокупность X распределена по равномерному закону, проверив это по критерию Пирсона. Определили параметры и числовые характеристики закона и построили для них доверительные интервалы.

К-во Просмотров: 390
Бесплатно скачать Курсовая работа: Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона