Курсовая работа: "Дискретні та неперервні динамічні системи в економіці" в MAPLE 7
— норма амортизації основного капіталу ;
— норма заощадження s (задається безпосередньо або ж у вигляді певних умов, наприклад, максимізація споживання).
Мета дослідників – з’ясувати питання про те, як змінюються ендогенні змінні в моделі економічного зростання (Y , C та І ) і який із чинників є визначальним фактором довгострокового економічного зростання.
Модель економічного зростання Харода–Домара
Це найпростіша модель економічного зростання, і була вона розроблена наприкінці 40‑х рр. Модель описує динаміку доходу (Y ), який є сумою споживчих (С ) та інвестиційних (І ) витрат. Економіка вважається закритою, тому чистий експорт (NX ) дорівнює нулю, а державні витрати (G ) в моделі не вирізняються. Основним фактором зростання є нагромадження капіталу.
Основні передумови моделі:
– постійна продуктивність капіталу MPK = dY/dK ;
– постійна норма заощадження s = I/Y ;
– відсутній процес вибуття капіталу W = 0 ;
– інвестиційний лаг дорівнює нулеві, тобто інвестиції миттєво переходять у приріст капіталу. Формально це означає, що dK(t) = I(t) ;
– модель не враховує технічного прогресу;
— випуск не залежить від затрат праці, оскільки праця не є дефіцитним ресурсом;
— використовується виробнича функція Леонтьєва, яка передбачає неможливість взаємозаміни акторів виробництва – праці і капіталу.
Припускається, що швидкість доходу пропорційна інвестиціям: dY = MPK * I(t) = MPK * s * Y, а темп приросту доходу dY/Y * dt є постійним і дорівнює s * MPK . Він прямо пропорційний нормі заощаджень та граничній продуктивності капіталу. Інвестиції (І ) та споживання (С ) в моделі Харода-Домара зростають з таким же постійним темпом (s * MPK ).
2. Рішення проводимо в пакеті MAPLE7, використовуючи функцію вирішення диференційного рівняння з початковими умовами Y (t=0)=Y0 :
> L6:=diff (y(t), t)=(s/i*y(t) – A/i*t);
- ans1:= dsolve({L6, y(0)=Y0}, y(t));
Таким чином, розв’язком рівняння Харода-Домара у вигляді
з початковою умовою Y (t=0) =Y0 ; s, A, і – const;
є функція:
Завдання №2
Попит D та пропозиція S як функції змінної в часі ціни p=F(t) та її похідних задаються виразами
(2.2.0)
Знайти стаціонарну ціну рівноваги попиту та пропозиції pD=S (t) – при умові D=S – вирівнювання попиту та пропозиції, як функцію часу, та з’ясувати чи вона є стійкою (оцінити рівень динаміки похідної ).
Рішення:
1. Якщо попит D та пропозиція S є функціями ціни p(t) та її першої та другої похідних , то їх рівняння в загальному вигляді можна представити наступним чином [1]: