Курсовая работа: "Дискретні та неперервні динамічні системи в економіці" в MAPLE 7

(2.3.0)

та дослідити їх стійкість в лінійному наближенні.

Рішення:

1. Положення рівноваги вихідної динамічної системи (стаціонарні точки динамічної системи) визначається наступними умовами:

(2.3.1)

звідкіля маємо систему рівнянь рівноваги

(2.3.2)

Рішення системи рівнянь рівноваги (2.3.2) в пакеті MAPLE7 дає наступні 4 пари коренів – стаціонарних точок рівноваги динамічної системи (2.3.0):


> eqp1:=-x*x+2*x-x*y=0;

> eqp2:=-y*y+6*y‑2*x*y=0;

>

> solve({eqp1, eqp2}, {x, y});

(2.3.3)

2. Для дослідження стійкості кожного з отриманих рішень, складаємо системи першого наближення в околицях точок рівноваги за допомогою розкладення в ряд Тейлора. Формула Тейлора для функції двох змінних x, y у першому наближенні (тільки рівень 1 похідних) для функції в околицях точки x0 , y0 має наступний вигляд [7]:

(2.3.4)

Побудову систем рівнянь першого наближення системи (2.3.2) виконуємо за допомогою пакета MAPLE7 [4]:

> DxDt:=-x*x+2*x-x*y;

> mtaylor (DxDt, [x=0, y=0], 2);

> mtaylor (DxDt, [x=2, y=0], 2);

> mtaylor (DxDt, [x=4, y=-2], 2);

> mtaylor (DxDt, [x=0, y=6], 2);

(2.3.5)

> DyDt:=-y*y+6*y‑2*x*y;

К-во Просмотров: 380
Бесплатно скачать Курсовая работа: "Дискретні та неперервні динамічні системи в економіці" в MAPLE 7