Курсовая работа: Расчет червячно-цилиндрического редуктора и электродвигателя
м/с.
Определяем скорость скольжения
м/с.
Так как фактическая скорость скольжения vS = 6,3 м/с не отличается от принятой на этапе предварительного расчета, то допускаемые напряжения не корректируем.
Определяем точный КПД редуктора с учетом потерь в опорах, потерь на разбрызгивание и перемешивания масла
где r’ = 1°53’ [2, с. 59, таблица 4.4] – приведенный угол трения.
Принимаем седьмую степень точности передачи и определяем коэффициент динамичности КV = 1,4 [2, с. 65, таблица 4.7].
Определяем коэффициент неравномерности распределения нагрузки
,
где Q = 57 [2, с. 64] – коэффициент деформации червяка при z1 = 2 и q = 8;
х = 0,6 [2, с. 65] – вспомогательный коэффициент при незначительных колебаниях нагрузки.
Рассчитываем фактический коэффициент нагрузки
К = Кb × КV = 1,14 × 1,4 = 1,596
Определяем фактическое контактное напряжение на активных поверхностях зубьев червячного колеса
МПа
Результат расчета следует признать удовлетворительным, так как фактическое контактное напряжение sH = 152 МПа меньше допускаемого [sH ] = 153 МПа.
Осуществляем проверку прочности зубьев червячного колеса на изгиб.
Рассчитываем эквивалентное число зубьев
.
Определяем коэффициент формы зуба YF = 2,22 [2, с. 63, таблица 4.5] для эквивалентного числа зубьев zV = 44.
Определяем напряжение изгиба
МПа
Результат расчета следует признать удовлетворительным, так как фактическое изгибное напряжение sF = 11,3 МПа не превышает допускаемого [sOF ] = 53,5 МПа.
Определяем нагрузки, действующие на валы.
Окружное усилие на колесе Ft 2 и осевое на червяке Fа1
Н
Радиальное усилие на колесе и червяке
Н