Курсовая работа: Расчёт и анализ нерекурсивного цифрового фильтра
Точность аппроксимации оценивалась по формуле (32). В таблице (5) приведены результаты расчёта
Результаты расчета точности аппроксимации для метода наименьших квадратов
В таблице 6 приведена максимальная (абсолютная) погрешность аппроксимации для различных значений N.
Абсолютная погрешность аппроксимации для метода наименьших квадратов
Абсолютная погрешность аппроксимации АЧХ | ||
N=135 | N=25 | N=32 |
0,125 | 0,057 | 0,051 |
2.3 Сравнение методов расчёта
Сравнивая результаты расчётов точности аппроксимации, приведённые в таблицах 2 и 6, можно сделать вывод, что метод наименьших квадратов обеспечивает более точную аппроксимацию при N=25 амплитудно-частотной характеристики по сравнению с методом частотной выборки. С увеличением порядка фильтра N точность аппроксимации увеличивается для обоих методов, но точность метода наименьших квадратов начинает уменьшаться по сравнению с методом частотной выборки.
Заключение
В данной курсовой работе был рассмотрен расчёт нерекурсивного цифрового фильтра двумя методами: методом наименьших квадратов и методом частотной выборки. Результаты расчётов точности аппроксимации для каждого метода позволяют сделать следующие выводы:
· Точность аппроксимации увеличивается с увеличением N (порядка фильтра)
· Метод наименьших квадратов обеспечивает более точную аппроксимацию при средних значениях N.