Курсовая работа: Расчет показателей надежности и законов их распределения

Таблица 4 - Выравнивание статистического ряда по экспоненциальному закону

W f W-X x=Wi/X (Nk/X)*ℓ f'
16,09 0,00 10,76 3,02 0,026 0,488 0,00
14,09 0,00 8,76 2,64 0,035 0,657 1,00
12,09 0,00 6,76 2,27 0,492 0,657 1,00
10,09 2,00 4,76 1,89 0,077 1,435 1,00
8,09 9,00 2,76 1,52 0,135 2,538 3,00
6,09 16,00 0,76 1,14 0,237 4,445 4,00
4,09 14,00 -1,24 0,77 0,415 7,782 8,00
2,09 9,00 -3,24 0,39 0,733 13,760 14,00
Всего 50,00 31,76 32,00

Рисунок 1 - Выравнивание статистического ряда по экспоненциальному закону распределения

3.1.1 Оценка различий эмпирического и теоретического распределений

Методика оценки различий эмпирического и теоретического распределений для различных законов распределения одна и та же.

Для проверки согласованности теоретического и эмпирического распределений чаще всего используют критерий c2 Пирсона, величину которого рассчитывают по формуле


где c02 – стандартные значения критерия, его значения находят по специальным таблицам в зависимости от числа степеней свободы v;

, – эмпирические и теоретические частоты классов соответственно.

Первичное v1 и вторичное v2 числа степеней свободы определяют по следующим формулам:

; ; .

где r1,r2 - числа классов до и после объединения классов с малыми теоретическими частотами.

Крайние классы с частотой < объединяют с соседними классами ( – минимально допустимая теоретическая частота крайних классов в зависимости от начального числа степеней свободы)

Различия распределений могут считаться случайными, если эмпирический критерий не достигает требуемого порога вероятности b. Необходимо ориентироваться на три уровня вероятности: при малой ответственности исследований b1>= 0,999; при обычной b2 >= 0,99; при большой b3 >= 0,95.

Таблица 5 - Определение различий законов распределения

W1 f f ' f-f ' (f-f ' )^2 ( f-f ' )^2/f '
16,1 0 0,49 -0,49 0,24 0,49
14,1 0 0,66 -0,66 0,43 0,66
12,1 0 0,66 -0,66 0,43 0,66
10,1 2 1,44 0,56 0,32 0,22
8,1 9 2,54 6,46 41,75 16,45
6,1 16 4,44 11,56 133,53 30,04
4,1 14 7,78 6,22 38,66 4,97
2,1 9 13,76 -4,76 22,66 1,65
Всего 50 31,762 55,13

Следовательно, c02: 13,3; 18,5 при b соответственно, 0,99, 0,999

Таким образом, при b=0,99 и 0,999 ответственности испытаний c2 больше c02, то есть эмпирическое распределение противоречит экспоненциальному закону распределения.

3.2 Нормальный закон распределения

Таблица 6 - Выравнивание статистического ряда по нормальному закону

Нормальный закон
Теор частоты
W f W-X x=(W-Ч)/сигма f(x) Nkf(x)/сигма f'
16,09 0,00 10,76 4,87 0,00 0,000 0,00
14,09 0,00 8,76 3,97 0,00 0,007 0,00
12,09 0,00 6,76 3,06 0,00 0,167 0,00
10,09 2,00 4,76 2,15 0,04 1,773 2,00
8,09 9,00 2,76 1,25 0,18 8,277 8,00
6,09 16,00 0,76 0,34 0,38 17,026 17,00
4,09 14,00 -1,24 -0,56 0,34 15,431 15,00
2,09 9,00 -3,24 -1,47 0,14 6,162 6,00
Всего 50,00 48,84 48,00

Рисунок 2 - Выравнивание статистического ряда по нормальному закону распределения


Таблица 7 - Определение различий законов распределения

W1 f f ' f-f ' (f-f ' )^2 ( f-f ' )^2/f '
16,1 0 0,00 0,00 0,00 0,00
14,1 0 0,01 -0,01 0,00 0,01
12,1 0 0,17 -0,17 0,03 0,17
10,1 2 1,77 0,23 0,05 0,03
8,1 9 8,28 0,72 0,52 0,06
6,1 16 17,03 -1,03 1,05 0,06
4,1 14 15,43 -1,43 2,05 0,13
2,1 9 6,16 2,84 8,06 1,31
Всего 50 48,842 1,77

Следовательно, c02:11,1; 15,1; 20,5 при b соответственно 0,95, 0,99, 0,999

Таким образом, при b=0,99 и 0,999 ответственности испытаний c2 меньше c02, то есть эмпирическое распределение не противоречит нормальному закону распределения.

3.3 Распределение Вейбула

Таблица 8 - Выравнивание статистического ряда по распределение Вейбула

W f Wi /a x=af (Wi/a)

f'
16,09 0,00 2,74 1,2134 20,636 20,6
14,09 0,00 2,40 1,4715 25,026 25,0
12,09 0,00 2,06 1,5130 25,731 25,7
10,09 2,00 1,72 1,3597 23,124 23,1
8,09 9,00 1,38 1,0791 18,352 18,4
6,09 16,00 1,04 0,7590 12,908 12,9
4,09 14,00 0,70 0,4697 7,988 8,0
2,09 9,00 0,36 0,2495 4,243 4,2
Всего 50,00 138,01 137,90

Рисунок 3 - Выравнивание статистического ряда по распределению Вейбула

К-во Просмотров: 300
Бесплатно скачать Курсовая работа: Расчет показателей надежности и законов их распределения