Курсовая работа: Расчет показателей надежности и законов их распределения

Следовательно, c02: 15,1; 20,5 при b соответственно, 0,99, 0,999

Таким образом, при b=0,99 и 0,999 ответственности испытаний c2больше c02, то есть эмпирическое распределение противоречит распределения Вейбула.

Вывод: Эмпирическое распределение соответствует нормальному закону распределения.


4. Определение доверительного интервала для математического ожидания случайной величины

В рассмотренном способе оценки числовых характеристик случайных величин неизвестный параметр определялся одним числом. Такая оценка называется точечной. При оценке надежности машин и оборудования часто требуется не только найти для заданного параметра числовое значение, но и оценить его точность и достоверность. Пусть для параметра X (например, математического ожидания) получена по результатам выборочного обследования точечная оценка этого параметра X.

Требуется определить ошибку замены параметра Xего точечной оценкой X. Назначим некоторую вероятность b (b = 0,9) и определим такое значение ошибки e> 0, для которого .

Это равенство означает, что с вероятностью неизвестное значение параметра Xпопадает в интервал .

Интервал называется доверительным, а b- доверительной вероятностью.

Рассмотрим зависимости, используемые при построении доверительных интервалов для параметров случайной величины, распределенной по нормальному закону.

Для математического ожидания границы доверительного интервала определяют по формуле

,

где tb - коэффициент распределения Стьюдента, определяемый по таблицам в зависимости от доверительной вероятности b и числа степеней свободы или размера выборки N -1, ( tb= 1,658)

Доверительный интервал для математического ожидания ресурса согласно формуле:

Iβ=(4,812; 5,848)

Вывод :

Таким образом, точное значение ресурса автомобилей или их агрегатов до капитального ремонта с вероятностью 0,99 находится в пределах от 4,812 до 5,848 тыс. км пробега.


Список использованных источников

1. Кузнецов Н. И., Абакумов Н. В. Надежность машин и оборудования: Методические указания и задания к выполнению расчетных работ и задач. - Архангельск: Изд-во АГТУ, 2001. - 36 с.

2. Кузнецов Н. И., Абакумов Н. В. Надежность машин и оборудования: Нормативно справочный материал к выполнению расчетных работ и задач. - Архангельск: Изд-во АГТУ, 2003. - 14 с.

К-во Просмотров: 299
Бесплатно скачать Курсовая работа: Расчет показателей надежности и законов их распределения