Курсовая работа: Расчет установившегося режима работы электрической системы
Матрица Якоби не должна быть вырожденной, тогда решая полученную систему (линейную) любым способом, находим первое приближение переменных:
Каждый шаг итерационного процесса состоит из решения линейной системы:
и определения следующего приближения неизвестных:
Контроль сходимости осуществляется по вектору невязок:
Уравнение узловых напряжений в форме баланса мощностей для -го узла можно записать в следующем виде:
Слагаемое внесено в сумму, балансирующему узлу присвоен номер .
Выделим в уравнении действительные и мнимые части:
где , – соответственно небалансы активных и реактивных мощностей в узле ;
, – вектор-столбцы действительных и мнимых составляющих напряжений.
В расчетах на ЭВМ обычно в качестве неизвестных используются модули и фазы напряжений узлов и .
Уравнение баланса мощностей для -го узла при переменных и :
где
Уравнение в форме баланса мощностей:
С учетом реальных условий в электрических системах можно пренебречь недиагональным элементами матрицы Якоби, т.е.
Метод Ньютона очень быстро сходится и имеет высокую надежность.
Результаты решения нелинейных уравнений узловых напряжений в форме баланса мощностей в полярной системе координат в среде MathCAD методом Ньютона, а так же сама программа расчета, приведены в Приложении.