Курсовая работа: Рассеяние волн в задаче о маскировке объектов методом волнового обтекания
Тогда дифференциал рассеянной мощности через площадку принимает следующий вид:
. (1.2.10)
Дифференциал телесного угла в сферических координатах r, θs , φs
Теперь, подставляя (1.2.7) в (1.2.10) получим следующее выражение для мощности, рассеянной в элемент телесного угла:
. (1.2.11)
Разделив левую и правую части выражения (1.2.11) на вектор Умова-Пойтинга для падающей волны (1.2.4), получим
. (1.2.12)
Размерность последнего соотношения является размерностью площади. называется дифференциальным сечением рассеяния и обозначается как .
А интегрирование 1.2.12, в свою очередь, даёт
. (1.2.13)
, (1.2.14)
где – рассеянная мощность, а – сечение рассеяния.
. (1.2.15)
1.2 Решение задачи о рассеянии на цилиндре
Решается задача о нахождении полей на таком удалении от точек рассеяния, что фронт распространения волн этих полей можно считать плоскостью. Найдём для этого сперва общее решение, характеризующее бесконечно длинный цилиндр, а затем подставим в решение граничные условия, обобщив его тем самым на цилиндр длинны L.
Пусть поле падающих волн задаётся выражением:
, (1.2.1)
где (см. рис. 2.1), падающая волна раскладывается в суперпозицию двух поляризаций – горизонтальной линейной и вертикальной линейной, а и горизонтальный и вертикальный вектора поляризации.
Падающая волна также может быть представлена в виде векторных цилиндрических волн, т.е. следующим образом:
. (1.2.2)
Цилиндр высоты L, радиуса a и проницаемости
Общее решение будет состоять из выражений для рассеянного поля и поля внутри цилиндра объединённых граничными условиями. Запишем теперь выражения, определяющие рассеянное и внутренне поля с точностью до неизвестных коэффициентов , , ,на оговоренном ранее расстоянии от точки рассеяния
, (1.2.3)
, (1.2.4)
где , – символ, с помощью которого обозначается конфигурация функций Бесселя и Ханкеля для величин, перед которыми он стоит, а – коэффициенты, получаемые с использованием преобразования Фурье от выражения (1.2.1)
,
известны для такого приближения.