Курсовая работа: Рассеяние волн в задаче о маскировке объектов методом волнового обтекания
, (1.2.5)
, (1.2.6)
из которых можно путём преобразований получить следующие выражения
, (1.2.7)
, (1.2.8)
которые задают зависимость неизвестных коэффициентов из выражения для внутреннего поля (1.2.4) от направлений распространения
, полей
,
, координаты
и
– радиуса цилиндра. Таким образом, поле
определено, т. к. коэффициенты
могут быть легко получены из (1.2.7), (1.2.8).
Поле, образовавшееся после рассеяния падающего поля на цилиндре высоты L, в точках находящихся на достаточном для нашего приближения удалении определим путём интегрирования по конечной поверхности цилиндра, исключая граничные точки, используя формулу
. (1.2.9)
После подстановки (1.2.4) в (1.2.9) и выполнения интегрирования по dz в интервале ( и по dφ в интервале (0; 2π) получим следующее выражение для поля рассеянных волн:
{[
]
[
]}. (1.2.10)
Итак, нами были найдены поля и
. Однако есть несколько ограничений для полученных решений. Во-первых, следует иметь в виду, что такое решение непригодно вблизи точек рассеяния. Во-вторых, амплитудные коэффициенты, которые использовались в уравнениях (2.3), (2.4), были взяты готовыми, как известные для плоских волн. В общем случае их нужно рассчитывать отдельно для каждой конкретной задачи, используя преобразование Фурье, как это делается в работе [9].
1.3 Быстрое преобразование Фурье
Преобразование Фурье используется при решении задачи о рассеянии с целью нахождения амплитудных коэффициентов необходимых для описания волны. Характер последних, как уже упоминалось, зависит от того в каком приближении мы рассматриваем поставленную задачу. Суть применения преобразования Фурье заключается в разбиении произвольной волны на элементарные плоские волны. Таким образом, получаем амплитудные коэффициенты, стоящие как множители перед рядом, в виде которого представляется волна. Затем можно подставить граничные условия в полученное выражение, что позволяет выразить неизвестные ,
,
,
, как, например, в (1.2.3), (1.2.4). Затем, проведя обратное преобразование Фурье, получим представление искомой волны, удовлетворяющее задаче.
Быстрое преобразование Фурье (БПФ) – это реализация обычного (дискретного) преобразования Фурье (ДПФ), но с намного меньшим количеством операций n=Nlog2 N, где N – размер строки данных, в отличие от n=N2 в ДПФ. В БПФ используются исключительно N, являющиеся степенями двойки. Если N не является степенью двойки, то его дополняют нолями до ближайшей из степеней.
Для осуществления БПФ можно использовать лемму Даниельсона-Ланкзоса, которая разбивает ряд ДПФ
, (1.3.1)
где – исходная функция, на две суммы – по чётным и нечётным индексам j:
. (1.3.2)
=
, (1.3.3)
где . Это и есть лемма Даниельсона-Ланкзоса [2]. Она подходит для осуществления как прямого БПФ, так и обратного.
В массиве данных сперва следует произвести нумерацию элементов в двоичном виде, а затем пересортировать массив, заменяя каждый элемент элементом с обратным двоичным индексом. Полученная в результате таких перестановок последовательность после преобразования по формуле (1.3.3) задаёт искомую функцию.
Существуют также и другие алгоритмы БПФ, как, например в [10], но они в отличие от леммы Даниельсона-Ланкзоса не выполняют как прямое, так и обратное преобразование Фурье.
2. Скрытие материальных объектов методом волнового обтекания
2.1 Основополагающие идеи