Курсовая работа: Разработка системы для оценки перспективности производственных направлений на предприятии
Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства.
Чтобы численно решить уравнение f (х) = 0 методом простой итерации, его необходимо привести к следующей форме: х = f(х), где f (х) -сжимающее отображение.
Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:
(1.3.1)
В предположении, что точка приближения «достаточно близка» к корню , и что заданная функция непрерывна , окончательная формула для такова:
(1.3.2)
С учётом этого функция определяется выражением
(1.3.3)
Эта функция в окрестности корня осуществляет сжимающее отображение, и алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:
(1.3.4)
По теореме Банаха последовательность приближений стремится к корню уравнения .
Рисунок 1.1- Графическое представление метода Ньютона
Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка и берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.
Достоинства метода Ньютона:
1) если минимизируемая функция является квадратической, то метод позволит найти минимум за один шаг;
2) если минимизируемая функция относится к классу поверхностей вращения, то метод также обеспечивает сходимость за один шаг;
3) если функция несимметрична, то метод не обеспечивает сходимость за конечное число шагов. Но для многих функций достигается гораздо более высокая скорость сходимости, чем при использовании других модификаций метода наискорейшего спуска.
Использование метода Крылова и метода Ньютона приведены в приложениях. Реализация методов производилась в среде МаthСАD и VB.Net.
1.4 Метод Гаусса для решения систем уравнений
Метод Гаусса - классический метод решения системы линейных алгебраических уравнений. Состоит в постепенном понижении порядка системы и исключении неизвестных.
Пусть исходная система выглядит следующим образом
(1.4.1)
Матрица A называется основной матрицей системы, b — столбцом свободных членов.
Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду (эти же преобразования нужно применять к столбцу свободных членов)
При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных .
Тогда переменные называются главными переменными. Все остальные называются свободными.
Если хотя бы одно число , где i > r, то рассматриваемая система несовместна.