Курсовая работа: Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения
Курсовая работа
на тему: «Разработка технологии сборки и монтажа ячейки трёхкоординатного цифрового преобразователя перемещения»
Введение
Рассматриваемая ячейка входит в трёх-координатного цифрового преобразователя перемещений. Преобразователь должен обеспечивать преобразование угловых координат со следующими точностными и динамическими характеристиками:
- разрешающая способность: 20 угл. сек. (16 дв. разр.);
- ошибка преобразования: не более ±0,6 д.у. (± 2 угл. мин.) с учётом точностных параметров датчика, в условиях воздействия групп эксплуатации 1.7.1, 2.1.3, 2.2.2 ГОСТ РВ 20.39.304–98;
- скорость вращения вала датчика: не более 1,5 рад/с (90 град/с);
- ускорения вращения вала датчика: не более 4 рад/с2 (230 град/с2 );
- температурный диапазон работы: от -40 до +60 о С;
- потребляемая мощность: не более 10 Вт;
Одним из основных требований к ЦПП являются минимальные габариты и вес. Исходя из этого, размеры ячейки и ее масса должны быть минимальны. Для обеспечения требуемых электрических параметров при минимальных размерах изделия используются элементы высокой степени интеграции, предназначенные для поверхностного монтажа. Высокая эксплуатационная надежность является одним из основных требований к устройствам подобного типа.
Целью данного курсового проекта является разработка технологического процесса (ТП) сборки и монтажа ячейки ЦПП; разработка общего алгоритма реализации ТП и маршрутной карты сборки и монтажа ячейки ИММТ; дать оценку технологичности ячейки.
1. Современное состояние техники поверхностного монтажа
Современные электронные узлы значительно отличаются от устройств разработки конца 80-х – начала 90-х годов прошлого века. Во-первых, новые технологии поверхностного монтажа привели к уменьшению габаритов компонентов в 3–6 раз. Во-вторых, появились новые корпуса интегральных схем с малым шагом между выводами (0,5–0,65 мм), корпуса с шариковыми выводами (BGA), новые малогабаритные дискретные компоненты и соединители. В-третьих, повысилась точность изготовления печатных плат, увеличились возможности для разводки сложных устройств в малых габаритах. Появление новой элементной базы позволяет говорить о возможности воплощения сложных систем на одной плате и даже на одном кристалле (system-on-chip). Это означает, что на одной и той же типичной плате устройства обработки сигналов в малых габаритах размещаются высокочувствительный аналоговый тракт, аналого-цифровой преобразователь, высокоскоростная схема цифровой обработки на процессоре и (или) программируемых логических интегральных схемах, буферные элементы и драйверы линий связи, элементы стабилизаторов напряжения питания и преобразователей уровня, а также другие узлы. Естественно, это накладывает отпечаток на методологию разработки платы.
Современное электронное устройство невозможно представить без применения технологии поверхностного монтажа. Преимущества поверхностного монтажа неоспоримы – высокая плотность компоновки, улучшение электромагнитной совместимости; таким образом, даже в опытных разработках будущее за поверхностным монтажом.
Первые корпуса для поверхностного монтажа появились в конце 50-х – начале 60-х годов прошлого века. Корпуса типа flat pack представляли собой металлический корпус с двусторонним расположением выводов. Отечественному разработчику такие корпуса известны как корпуса «типа 4», в которых было выпущено огромное количество ИС для применений в специальной технике.
Ныне применяется огромное число корпусов поверхностного монтажа с шагом между выводами до 0,5 мм и массивами шариковых выводов (BGA).
При использовании поверхностного монтажа дискретные компоненты и микросхемы с шагом выводов более 1 мм должны быть размещены так, чтобы выводы компонентов не выходили за пределы контактной площадки (рис. 1). Оптимально симметричное расположение компонентов. Такие компоненты паяются методом групповой пайки в конвекционных печах.
К группе поверхностно – монтируемых компонентов относятся пассивные чип-компоненты в корпусах, различающихся по размеру, и прочие ИС в базовых технологических корпусах PLCC, QFP, BGA и т.д. (см. рис. 1). Сюда же относят специализированные технологии, которые еще не стали стандартом электронной сборки или стали им относительно недавно (TAB, flip-chip) и т.д.
Автоматизация процесса установки ПМК стала возможной, благодаря их корпусной chip структуре и, следовательно, поэтому нет необходимости устанавливать компоненты в отверстия на печатной плате. Традиционные компоненты, монтируемые в отверстия, были наиболее узким местом в процессе установки их на плату, поскольку практически полностью исключали возможность автоматизации процесса. Гораздо проще и быстрее автоматизировать процесс установки ПМК, чем монтаж традиционно монтируемых компонентов.
Основные преимущества ТМП:
- снижение массы и габаритов изделия (в 2…6 раза);
- улучшение помехозащищенности, быстродействия и частотных свойств ЭРЭ (паразитная индуктивность и емкость выводов уменьшается в 2…10 раз);
- повышение производительности труда на сборочных работах (в 5 раз), возможность полной автоматизации процесса;
- улучшение качества пайки, повышение надежности, уменьшение количества металлизированных переходных отверстий;
- уменьшение себестоимости, капитальных затрат, транспортных расходов при производстве.
Основные недостатки ТМП:
- недостаточная номенклатура ЭРЭ, приспособленных под поверхностный монтаж;
- очень жесткие (микронные) допуски на точность изготовления;
- отсутствие единых стандартов на размеры корпусов, топологию контактных площадок, электрические характеристики;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--