Курсовая работа: Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения

Довольно часто встречающимся методом нанесения припойной пасты, применяемым в штучном и мелкосерийном производстве, является переносной метод, в котором используется диспенсер – шприц. Автоматическая дозировка осуществляется в соответствии с данными САПР при помощи сжатого воздуха. Паста поступает в виде «капель» непосредственно на КП печатной платы [10].

Нанесение клеевых материалов

Клеящие материалы используют в настоящее время не только для крепления навесных компонентов перед пайкой, но и для уменьшения поверхностного натяжения припоя при пайке и других целей. Они могут применяться отдельно, а также входить в состав припойных паст.

Самое большое преимущество использования полимерных клеевых материалов, состоит в возможности варьирования их свойств введением в их состав различных модификаторов, активных разбавителей, добавок и наполнителей, придающих клеям требуемые свойства [1].

Выбор адгезива в первую очередь определяется методом его нанесения на плату. Принципиальным моментом в определении пригодности выбранного адгезива является его способность формироваться в виде капли, заполняющей самый большой встречающийся промежуток между компонентом и платой и в то же время не растекающейся из-под самых малогабаритных компонентов после нанесения. Адгезив должен быть относительно жидким для удобства нанесения из шприца при минимальном давлении и в то же время быть достаточно вязким, чтобы не вытекать самопроизвольно и не оставлять следа. Также очень важно время отверждения адгезива и его свойства после отверждения, а также технологическая совместимость с условиями работы автоматизированной сборочно-монтажной производственной линии. Все эти требования необходимо учитывать при выборе адгезива.

Исследования, проводимые с целью выбора оптимального состава адгезива для сборки компонентов в микрокорпусах и чип – конструкций, показали, что клеевые составы на основе модифицированных эпоксидных смол, отверждаемых при температуре не выше 150 °С в течении 1 – 3,5 мин, способны выдерживать до четырех проходов сквозь волну припоя без существенного снижения адгезионной прочности соединения [3].

Сборка ЭРК на плату

Целью процесса сборки является получение надежных механических соединений между конструктивами ЭУ.

Сборка компонентов на ПП состоит из подачи их к месту установки, ориентации выводов относительно монтажных отверстий или контактных площадок, сопряжения со сборочными компонентами и фиксации в требуемом положении.

Сборка компонентов на ПП может выполняться вручную, механизировано, или автоматизировано [10].

В процессе разработки технологий автоматизации определились три принципа установки компонентов:

· последовательный или поточно-последовательный с использованием одноголовочного манипулятора;

· поочередно-групповой или поточно-групповой с использованием карусельных многоголовочных систем;

· поточно-параллельным или симультанным (т.е. одновременным) с использованием параллельно работающих нескольких одноголовочных манипуляторов или карусельных систем.

Таблица 3. Уровни автоматизации процесса сборки ПМК на КП

Уровни автоматизации Краткие сведения Пример сборочного оборудования (либо его узла)
Последовательный или поточно-последовательный с использованием одноголовочного манипулятора. Особенности: последовательное выполнение единичных переходов или операций. Рабочая сборочная головка последовательно по заданной программе позиционирует поединично каждый компонент. Такая одноголовочная позиционирующая система обеспечивает наибольшую гибкость и точность установки широкого ряда компонентов, но имеет низкий уровень производительности. Зато конструкции таких систем развиваются и совершенствуются для того, чтобы достичь возможности установки всех существующих компонентов.
Поочередно-групповой или поточно-групповой с использованием карусельных многоголовочных систем. Групповая автоматизация характеризуется тем, что в единицу времени на этапе сборки устанавливается на плату поочередно несколько компонентов за один прием устройство рабочей сборочной головки автомата более сложное, чем при автоматизации.
Поточно-параллельным или симультанным (т.е. одновременным) с использованием параллельно работающих нескольких одноголовочных манипуляторов или карусельных систем. Поточно-параллельная система, реализуемая с применением высокоточных сложных универсальных сборочных автоматов (УСА), либо гибко автоматизированных линий сборки (ГАЛС), позволяет за один прием рабочей головки, либо за один переход платы через сборочный автомат устанавливать на ПП более 50% компонентов, либо сразу все 100%. Ее принцип состоит в разбиении ПП на несколько секций, каждая из которых индивидуально обслуживается отдельной системой. Принцип разбиения на секции может быть или по однородности компонентов, или по полю одинаковых плат в групповой заготовке, или по разбиению большей платы на отдельные зоны.

Обоснование выбора метода сборки для ячейки ИММТ

Конечно, в опытном, практически единичном производстве разрабатываемого изделия логичнее всего было бы обратиться к ручной сборке компонентов на плату. Это помогло бы избежать лишних производственных финансовых затрат. Однако данный вид сборки весьма трудоемкий и длительный по времени процесс, а также он не гарантирует приемлемого качества изготавливаемой продукции. Учитывая избыток ПМК (более 80% от всего количества) в ячейке ИММТ, ручная сборка становится вообще не приемлемой. В связи с этим, целесообразно использовать гибко автоматизированные сборочные многоголовочные (многозахватные) автоматы с универсальной башенной головкой при возможности замены рабочих головок. Такое оборудование повышает производительность, увеличивает надежность и качество продукции, сокращает длительность производственного цикла. Надежность и качество – являются определяющими при разработке ЭУ, и способствует привлечению потребителей.

4. Основные технологические операции монтажа ячеек ЭУ

Обоснование выбора метода микроконтактирования

Технология монтажа направлена на получение надежных электрических соединений между конструктивами.

Основным этапом технологического процесса (ТП) монтажа ЭУ является микроконтактирование электропроводящих элементов платы с выводами компонентов.

Эффективность высокоплотного монтажа определяется главным образом применением групповых, подающихся автоматически безинструментальных методов микроконтактирования. Автоматизация микроконтактирования в ТПМ является не только средством повышения производительности и технологичности изготовления ЭУ, но и одним из основных гарантов обеспечения качества и надежности получаемых при этом электрических соединений.

Из известных методов микроконтактирования для внутриузлового монтажа преимущественно используются пайка и микросварка, а в редких случаях – микроконтактирование с применением контактолов.

При планировании производства необходимо исходить из оптимальных значений надежности монтажных соединений: для паяных соединений интенсивность отказов (l) должна быть не менее 10-9 ч-1 , для сварных с оплавлением контактируемых материалов – 10-10 ч-1 .

При выборе микросварки как метода микроконтактирования следует учитывать нагревостойкость диэлектрического материала КП, подбирать контактирующие материалы с невысоким пределом упругости и др. Высококачественная микросварка в ТПМ – процесс дорогостоящий и низкопроизводительный.

Метод пайки является хорошо освоенным процессом микроконтактирования, который реализуется разными способами, имеет меньшее число ограничений по сравнению со сваркой и который является единственным групповым методом, автоматизируемым на самом высоком уровне, в том числе безинструментально.

Однако, пайка – далеко не идеальный метод микроконтактирования, даже в самых усовершенствованных ее вариантах, что связано с потребностью в припойных материалах и сложных очистительных процессах после монтажа. Но все же, пайка, на данный момент является самым оптимальным методом получения высоконадежного электрического соединения между конструктивами.

Индивидуальная пайка

В зависимости от типа производства пайка может выполняться индивидуально, или различными групповыми способами [2].

К-во Просмотров: 240
Бесплатно скачать Курсовая работа: Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения