Курсовая работа: Реализация математических моделей использующих методы интегрирования в среде MATLAB

Составим суммы: y0Δx+ y1Δx1+ y2Δx2…+yn-1Δx; Y1Δx+ y2Δx+…+ynΔx.

В результате вычислений получаем конечную формулу прямоугольников:

Формула трапеций

Возьмём определённый интеграл , где — непрерывная подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n).



Рис. 5 – Формула трапеций

Тогда площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x), а значит (следуя из геометрического смысла), и значение нужного нам интеграла, приблизительно равна сумме площадей обычных трапеций с основаниями yi-1 и yi и высотой h=(b-a)/n, так как (если более привычно выражать для нас) h это Δx,a Δx=(b-a)/n при делении отрезка на n равных отрезков при помощи точек x0=a<x1<…<xn=b. Прямые x=xk разбивают криволинейную трапецию на n полосок. Принимая каждую из этих полосок за обыкновенную трапецию, получаем, что площадь криволинейной трапеции приблизительно равна сумме обыкновенных трапеций.

Рис. 6 – Разбиение трапеции

Площадь крайней полоски слева равна произведению полусуммы основания на высоту

Итак, запишем сказанное выше в математическом виде:

– это и есть формула трапеций.

Формула Симпсона (формула парабол).

Разделим отрезок [a;b] на чётное число равных частей n=2m. Площадь криволинейной трапеции, соответствующей первым двум отрезкам [x0,x1], [x1,x2] и ограниченной заданной кривой y=f(x), заменим площадью криволинейной трапеции, которая ограничена параболой второй степени, проходящей через три точки M0[x0,y0], M1[x1,y1], M2[x2,y2] и имеющей ось, параллельную оси Oy (рис). Такую криволинейную трапецию будем называть параболической трапецией.

Уравнение па


?????? ? ????, ???????????? ??? Oy, ????? ???: . ???????????? A, B ? C ?????????? ???????????? ?? ???????, ??? ???????? ???????? ????? ??? ???????? ?????. ??????????? ???????? ???????? ? ??? ?????? ??? ????????. ????? ?????????????? ???????? ? ???? ???????????? ???????? ?????????. ??????? ???????? ??????? ????? ?????????????? ????????. ? ????????? ??????????, ???????? ??????? ????????:


Теперь рассмотрим методы решения интегралов с помощью программы Matlab.

1.1 Численный метод

Вычисление определенных интегралов.

Рассмотрим пример: .

В первую очередь необходимо создать функцию, вычисляющую подынтегральное выражение.

Для вычисления интеграла вызовем функцию quad, задав первым аргументом ссылку на функцию fint, а вторым и третьим — нижний и верхний пределы интегрирования.

По умолчанию функция quad вычисляет приближенное значение интеграла с точностью 10-6. [1, C.266] Для изменения точности вычислений следует задать дополнительный четвертый аргумент:

Вычисление двойных интегралов.

В MATLAB определена функция dblquad для приближенного вычисления двойных интегралов. Как и в случае вычисления определенных интегралов, следует написать файл-функцию для вычисления подынтегрального выражения. Вычислим интеграл:

Следовательно, функция должна содержать два аргумента x и y:

К-во Просмотров: 343
Бесплатно скачать Курсовая работа: Реализация математических моделей использующих методы интегрирования в среде MATLAB