Курсовая работа: Реализация математических моделей использующих методы интегрирования в среде MATLAB
Функция dblquad имеет пять входных аргументов. При ее вызове необходимо учесть, что первыми задаются пределы внутреннего интеграла по х, а вторыми — внешнего по у:
Интегралы, зависящие от параметра.
Функции quad и quadl позволяют находить значения интегралов, зависящих от параметров. Аргументами функции, вычисляющей подынтегральное выражение, должна быть не только переменная интегрирования, но и все параметры. Значения параметров указываются через запятую, начиная с шестого аргумента quad или quadl. [1, C.270]
Решим интеграл:
Зададим функцию
Используя quad, вычислим интеграл:
1.2 Символьный метод
Символьные переменные и функции являются объектами класса sym object, в отличие от числовых переменных, которые содержатся в массивах double array. Символьный объект создается при помощи функции syms. Команда
>> syms х a b
создает три символьные переменные х, а и b. Конструирование символьных функций от переменных класса sym object производится с использованием обычных арифметических операций и обозначений для встроенных математических функций, например:
>>f = (sin(x)+a)^2 * (cos(x)+b)^2/sqrt (abs(a+b))
f =
( sin(x)+a)2*(cos(x)+b)^2/abs(a+b)^(1/2)
Запись формулы для выражения в одну строку не всегда удобна, более естественный вид выражения выводит в командное окно функция pretty:
>>pretty(f)
2 2
(sin(x)+a) (cos(x)+b)
-------------------------------
1/2
| a + b |
Символьную функцию можно создать без предварительного объявления переменных при помощи sym, входным аргументом которой является строка с выражением, заключенная в апострофы:
Symbolic Math Toolbox позволяет работать как с неопределенными интегралами, так и с определенными. Неопределенные интегралы от символьных функций вычисляются при помощи int, в качестве входных аргументов указываются символьная функция и переменная, по которой происходит интегрирование, например:
Разумеется, функция int не всегда может выполнить интегрирование. В некоторых случаях int возвращает выражение для первообразной через специальные функции, например, посчитаем интеграл: