Курсовая работа: Реализация математических моделей использующих методы интегрирования в среде MATLAB
ВВЕДЕНИЕ.. 3
1. ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB.. 5
1.1 Численный метод. 9
1.2 Символьный метод. 11
2. MATLAB – СРЕДА МОДЕЛИРОВАНИЯ.. 15
3. РЕАЛИЗАЦИЯ ЭКОНОМИЧЕСКОЙ МОДЕЛИ ВЗАИМОРАСЧЁТОВ ПРЕДПРИЯТИЙ В СРЕДЕ MATLAB.. 16
ЗАКЛЮЧЕНИЕ.. 19
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ... 20
ПРИЛОЖЕНИЯ.. 21
ВВЕДЕНИЕ
Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этого метода состоит в замене реального объекта его «образом» - математической моделью. Этот метод позволяет быстро и «безболезненно» изменить объект, изучить его свойства и поведение в различных средах и т.д. Неудивительно, что математическое моделирование бурно развивается и проникает во все сферы знаний.
Создание модели проходит в 3 этапа: модель – алгоритм – программа.
|
На первом этапе строится модель, наиболее полно отображающая свойства объекта. Модель исследуется теоретическими методами, что позволяет получить важные предварительные знания об объекте. Второй этап включает в себя разработку алгоритма, для реализации модели на компьютере. Модель представляется в форме, удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые необходимо провести для нахождения искомых величин с заданной точностью. На третьем этапе создаются программы, переводящие модель и алгоритм на доступный компьютеру язык. К ним предъявляются требования экономичности и адаптивности к особенностям решаемых задач и используемых компьютеров. Их можно назвать электронным эквивалентом изучаемого объекта, уже пригодным для непосредственного испытания на компьютере.
Целью данной курсовой работы является изучение приёмов численного и символьного интегрирования на базе математического пакета прикладных программ, а также реализация математической модели, основанной на методе интегрирования.
1. ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB
Возможны два различных подхода к определению определённого интеграла.
ОПРЕДЕЛЕНИЕ 1: приращение F(b)-F(a) любой из преобразованных функций F(x)+c при изменении аргумента от x=a до x=b называют определённым интегралом от a до b функции F и обозначается .
Причём функция F является первообразной для функции f на некотором промежутке D, а числа а и b принадлежат этому промежутку. Это можно записать следующим образом: , это формула Ньютона-Лейбница.
|
ОПРЕДЕЛЕНИЕ 2: Если при любой последовательности разбиений отрезка [a;b] таких, что δ=maxΔxi→0 (n→∞) и при любом выборе точек интегральная сумма σk=f(εi) Δxi стремится к одному и тому же конечному пределу А, то это число А и есть определённый интеграл, т.е Δxi=A(2). Где Δхi=xi-xi-1 (i=1,2,…,n) ε=maxΔxi – начало разбиения произвольная точка из отрезка [xi-1;xi]
сумма всех произведений f(εi)Δxi, (i=1,…,n). Простыми словами, определенный интеграл есть предел интегральной суммы, число членов которой неограниченно возрастает, а каждое слагаемое стремится к нулю.
|
ГЕОМЕТРИЧЕСКИЙ СМЫСЛ:
Всякая непрерывная на отрезке [a,b] функция f интегрируема на отрезке [a,b], функция f неотрицательна, но определённый интеграл численно равен S криволинейной трапеции, ограниченной графиком функции f, осью абсцисс и прямыми x=a и x=b, .
Рассмотрим основные методы интегрирования: метод трапеций, метод прямоугольников и метод Симпсона.
Формула прямоугольников
Теперь рассмотрим первый вид приближённого вычисления:
требуется вычислить определённый интеграл: .
Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0, x1, x2,…, xn=b на n равных частей длины Δх, где Δх=(b-a)/n.
|
Обозначим через y0, y1 ,y2,…, yn-1, yn значение функции f(x) в точках x0, x1, x2…, xn, то есть, если записать в наглядной формуле:
Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--